• Title/Summary/Keyword: liquid alloy

Search Result 396, Processing Time 0.031 seconds

Effects of Risering Design and Alloying Element on Formation of Shrinkage Cavity in Ductile Cast Iron (구상흑연주철의 수축결함생성에 미치는 주조방안 및 합금원소의 영향)

  • Yu, Sung-Kon
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • The effects of risering design and alloying element on the formation of defects such as external depression, primary and secondary shrinkage cavities in ductile cast iron were investigated. Two types of risering design for the cylindrically step-wise specimen, No. 1(progressive solidification) and No. 2(directional solidification) risering designs, were prepared and six different alloy compositions were casted. In the No. 1 risering design, external depression or primary shrinkage cavities due to liquid contraction were observed in all the specimens from SG 10 to SG 60. The defects caused by liquid contraction seemed to be more affected by risering design than alloying elements. The secondary shrinkage cavities were also observed in all the specimens but a swollen surface was not observed in all the castings. The primary shrinkage cavities were located right under the top surface or connected to the top surface, and were characterized by smooth surfaces. On the other hand, the secondary shrinkage cavities were positioned in the thermal center of the specimen steps 3 and 4, and characterized by rough surfaces. In the No. 2 risering design, no external depression or primary shrinkage cavities due to liquid contraction were observed in all the specimens from SG 10 to SG 60. However, the secondary shrinkage cavities were formed in the thermal center of specimens SG 40, 50 and 60. Like the No. 1 risering design, a swollen surface was not observed in all the castings.

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Dynamic Simulation of Solid Particle Considering Change by Viscosity in Rheology Material (반응고 재료에서 점성을 고려한 고상입자의 거동예측을 위한 수치모사 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.26-38
    • /
    • 2009
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology process to be performed. General plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape which is rectangle shape(square array), rectangle shape(hexagonal array), and free shape tool. In addition, the dynamics behavior compare with Okano equation to power law model which is viscosity equation.

A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels (304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF

Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding (고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성)

  • Yeo, Ki-Ho;Park, Eun-Soo;Lee, Han-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

The properties and wear behavior of HVOF spray coating layer of Co-alloy powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.273-277
    • /
    • 2006
  • High velocity of oxy-fuel (HVOF) thermal spray coating is progressively replacing the other classical hard coatings such as chrome plating and ceramic coating by the classical methods, since the very toxic $Cr^{6+}$ ion is well known as carcinogen causing lung cancer, and the ceramic coatings are brittle. Co-alloy T800 powder is coated on the Inconel 718 substrates by the HVOF coating procesess developed by this laboratory. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester with a counter sliding SUS 304 ball both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied far the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $538^{\circ}C$ are drastically reduced compared to those of non-coated surface of Inconel 718 substrates. Wear traces and friction coefficients of both coated and non-coated surfaces are drastically reduced at a high temperature of $538^{\circ}C$ compared with those at room temperature. These show that the coating is highly recommendable far the durability Improvement coating on the surfaces vulnerable to frictional heat and wear.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF

Eco-friendly Fabrication Process of Al-Ti-C Grain Refiner

  • Cho, Hoon;Kim, Bong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.147-150
    • /
    • 2010
  • An eco-friendly production technique of Al-8.6Ti-0.025C refiner was developed by melting a Al-Ti master alloy in a graphite crucible, in which the potential nucleation site, TiC effectively formed by the spontaneous in-situ reaction between excessive Ti and carbon from graphite crucible. The A3003 alloy refined by the Al-8.6Ti-0.025C showed effectively refined macrostructure and enhanced mechanical properties comparable to the commercial Al-Ti-B refiner. The effective refinement was achieved in a shorter compare to the melt-treating time commercial Al-Ti-B refiner.