• Title/Summary/Keyword: liquid alloy

Search Result 398, Processing Time 0.035 seconds

A Study on the Formation of the Bosses on the Surface of A390 Cast Bar with Hot Top Process (Hot Top공정으로 제조한 A390합금 주조봉의 표면 돌기 생성에 관한 연구)

  • Lee, Jeong-Mu;Gang, Seok-Bong;Kim, Byeong-Jo
    • 연구논문집
    • /
    • s.25
    • /
    • pp.155-161
    • /
    • 1995
  • During casting of A390 billet by Hot Top process, bosses were formed on the surface of cast bar. The formation of boss is assumed due to a large amount of latent heat released during the formation of primary Si in A390 alloy. The low melting point elements around primary Si are locally remelted to liquid and interdendrite offers a path by which the liquid can pass through to the surface. Addition of Sr decreases the amount of latent heat by preventing the formation of primary Si near the surface and thus suppresses the formation of boss on the surface of cast bar. Therefore, the formation of boss could be reduced remarkably when the casting condition was selected to extract the latent heat outward easily.

  • PDF

The Effect of the Gate Shape on the Controlled Material the Microstructure of Grain Size (게이트 형상이 결정입 제어 소재의 미세조직에 미치는 영향)

  • Jung Y. S.;Bae J. W.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.152-155
    • /
    • 2004
  • In the semi-solid die casting process, the important thing is the flow behaviors of semi-solid material. The flow patterns of semi-solid material can make the defects during die filling. To control of the flow patterns, is very important and difficult. In this paper, the flow behaviors of the semi-solid A356 alloy material during die filling at various die gate shapes has been observed with the grain size controlled material. The effects of the gate shape on the die filling characteristics were investigated. The filling tests in each plunger strokes were experimented, also simulated on the semi-solid material die casting process by MAGMAsofi. According to the filling tests and computer simulation, the effect of the gate shape on liquid segregation had been investigated.

  • PDF

Microstructural Evolution during Isothermal Heating and Thixoformability of Mg-5%Al Alloy (Mg-5%Al합금의 등온가열에 따른 미세조직변화 및 반응고 성형성)

  • Kim, Jeong-Min;HwangBo, Hyun-Seok;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.246-252
    • /
    • 2001
  • Variation in the microstructure of Mg-5%Al semi-solid slurry during isothermal heating was investigated in relation to initial microstructure, holding time, and holding temperature. Specimens with three different initial microstructures were isothermally heated. Dendritic structure in as-cast ingot was decomposed into solid globules in the semi-solid slurry during isothermal holding, while in the recrystallized specimens prepared by extrusion or rolling the size of solid particles was continuously increased during the heating. Effects of mold temperature and liquid fraction of slurry on the mold filling ability were also studied. Very thin section (0.4 mm) could be successfully filled up to 50 mm by 60% liquid slurry when the mold was heated to $600^{\circ}C$.

  • PDF

Expansion Behavior of Iron-copper Compact Made from (Fe-Cu) Prealloyed Powder

  • Kim, Youn-Che;Suk, Myung-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.812-813
    • /
    • 2006
  • Dimensional change of compact made from (Fe-Cu) prealloyed powder and copper powder compared to that of compact made from iron-copper elemental powder. The compact made from the prealloyed powder with a copper content of 7.18mass% which is nearly equal to its solution limit and copper powder showed only the large contraction in spite of penetration of liquid copper into grain boundary of the prealloyed powder. But the compact made from iron-copper elemental powder showed the large expansion in spite of same chemical composition with former case.

  • PDF

Study on the Surface Coating of CrN for Erosion in Liquid water Drop Test

  • Kwon, Sik-Chol;Baek, W-S;Lee, S-H;Kim, K-H;Kim, H-H
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.63-63
    • /
    • 2001
  • As a new approach to substitute for a hard alloy of stellite 6B containing Co which is radioactive in nuclear system, a hard-phase coating of CrN will be applicable to protect 12Cr steel from erosion at leading edge on steam turbine blade. The CrN coating was prepared by arc ion plating on 12 Cr steel and was undertaken in liquid impact test at the velocity of 35Om/sec, which simulate the environment in the last stage of blade. The erosion resistance of coating was evaluated by optical observation on damaged surface. The threshold number of impact was closely related with surface hardness. And thus, it was confirmed that surface hardening improves the life time of steam turbine blade.

  • PDF

A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior (우라늄-카드뮴 합금의 제조 및 증류거동에 대한 연구)

  • Kim, Ji-Yong;Ahn, Do-Hee;Kim, Kwang-Rag;Paek, Seung-Woo;Kim, Si-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.261-267
    • /
    • 2010
  • The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is "electrowinning" which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to $40.8g/cm^2/h$ within a temperature range of 773 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller.

Alkenylation of o-xylene with 1,3-Butadiene Over Base Catalysts (염기성 촉매를 이용한 o-xylene과 1,3-Butadiene의 알케닐화 반응)

  • Lee, Jong Seok;Lee, Soo Chool;Kil, Min Ho;Choi, Il Seok;Lee, Jae Sung;Kim, Jae Chang
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.669-675
    • /
    • 2002
  • The alkenylation of o-xylene with 1,3-butadiene to make OTP(ortho-tolyl Pentene) was carried out over liquid phase NaK alloy, Na metal and the metallic sodium dispersed on the specific support such as NaX and $Al_2O_3$. Liquid phase NaK alloy showed the improved conversion and selectivity when they were pretreated by ultrasound to increase the dispersion. For the case of metallic sodium, the induction period for the formation of homogeneous metal sodium solution with high dispersion was needed before the reaction. In the case of metallic sodium dispersed on support, more than 80 % conversion could be obtained without induction period regardless of supports used. But 85 % of the metallic sodium was resolved into the reaction mixture after reaction for 7 hours. The amount of byproducts, oligomers, produced from OTP and 1,3-butadiene increased with the amount of 1,3-butadiene introduced and the selectivity to OTP was in inversely proportional to the conversion.

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)