• Title/Summary/Keyword: liquefied natural gas (LNG) carrier

Search Result 39, Processing Time 0.024 seconds

Fatigue Analysis of LNG Cargo Containment System Connections in Membrane LNG Carrier

  • Park, Jun-Bum
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.112-124
    • /
    • 2017
  • As an LNG carrier preserves and transports liquefied natural gas under minus $163^{\circ}C$, the cargo tank has to have sufficient hull strength against not only the wave loads but also against loads caused by loading and unloading and thermal expansion to keep the LNG safely. The main insulation types for a CCS are No.96 and Mark III from GTT for the membrane LNG carrier. Particularly, the invar membrane plate in No.96 is very thin and its connections could experience high local stresses owing to such dynamic loads. Therefore, it should be verified whether those connections have sufficient fatigue lives for the purpose of operation and maintenance. This research aims at performing fatigue analysis with 0.1 fatigue damage criteria for 40 years of design life to support new membrane CCS development using proper S-N curves and the associated finite element modeling technique for each connection and then propose a reasonable design methodology.

Safety Assessment of LNG Transferring System subjected to gas leakage using FMEA and FTA

  • Lee, Jang-Hyun;Hwang, Seyun;Kim, Sungchan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.125-135
    • /
    • 2017
  • The paper considers the practical application of the FMEA(Failure Mode and Effect Analysis) method to assess the operational reliability of the LNG(Liquefied Natural Gas) transfer system, which is a potential problem for the connection between the LNG FPSO and LNG carrier. Hazard Identification (HAZID) and Hazard operability (HAZOP) are applied to identify the risks and hazards during the operation of LNG transfer system. The approach is performed for the FMEA to assess the reliability based on the detection of defects typical to LNG transfer system. FTA and FMEA associated with a probabilistic risk database to the operation scenarios are applied to assess the risk. After providing an outline of the safety assessment procedure for the operational problems of system, safety assessment example is presented, providing details on the fault tree of operational accident, safety assessment, and risk measures.

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

Study of LNG Reliquefaction Process in LNG Carriers (LNG 선박에서 천연가스 재액화공정의 재액화량에 관한 연구)

  • Ko, Byoung-Seok;Kim, Bum-Su;Lee, Heon-Seok;Kang, Yun-Jin;Kim, Min-Seop;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • In the past vaporized gases from a carrier were burned or used for fuel. Due to the movement of bigger LNG carriers and using diesel engine, it is limited that ways of deposing vaporizes gases from the carrier by the act of environment. For getting over the problem, a reliquefaction process is considered. Even though the reliquefaction process was created to three generation process, it has been researched and developed to optimize the process. Basically the reliquefaction process is compartmentalized into Reverse Brayton Cycle System and Claude Cycle System. This research is focused on the reliquefaction efficiency with the systems and changing equipments arrangement by using HYSYS. The result could be use for a design of a reliquefaction process.

Calculating the Mooring Force of a Large LNG Ship based on OCIMF Mooring Equipment Guidelines (OCIMF 계류설비지침 기반 대형 LNG선박 계류력 계산)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.594-600
    • /
    • 2022
  • When a large liquefied natural gas (LNG) carrier is anchored at a coastal terminal, calculations on mooring forces of mooring cables induced by environmental loads such as strong winds and currents are needed to secure mooring safety. The advantages and disadvantages of several existing mooring force calculation methods are compared and analyzed with their application conditions. Resultingly, mooring equipment guidelines of the Oil Companies International Marine Forum (OCIMF) are chosen as the computational method for this study. In this paper, the mooring forces of a large LNG carrier with spectrum was calculated using the OCIMF mooring equipment guidelines. The calculation shows similar maximum forces resulted from the calculation using experiment data of a wind tunnel test. To verify the results, OPTIMOOR, a dedicated mooring force calculation software, is used to calculate the same mooring conditions. The results of both calculations show that the computational method recommended by OCIMF is safe and reliable. OPTIMOOR calculates more detailed tensile force of each mooring cable. Thus, the calculation on mooring forces of mooring cables of a large LNG carrier using OCIMF mooring equipment guidelines is verified as an applicable and safe method.

Crack Propagation Analysis for IMO Type-B Independent Tank with Liquefied Natural Gas Carrier (LNG 운반선에 적용된 독립형 탱크의 균열 진전 해석에 관한 연구)

  • Kim, Beom-il;Shafiqul, Islam MD
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.529-537
    • /
    • 2021
  • Membrane-type hull and cargo holds have been designed and built for large ship. However, there is a growing interest in applying the same technology to small and medium-sized Liquefied natural gas(LNG) carriers to meet the recent increase in demand for LNG as an ecofriendly fuel and for expanding LNG bunkering infrastructure. The purpose of this study is to apply the IMO Type-B tank to small and medium-sized LNG carriers and verify the safety and suitability of the design. Fatigue crack propagation analysis was performed to install a partial second drip tray installed at the lower part of the LNG cargo tank by calculating the amount of leaked gas in the support structure supporting the cargo tank. First, a program for fatigue crack propagation analysis was developed, in which Paris' law and British Standard 7910 (BS 79110) were applied based on the International Code for the Construction of Equipment and Ships Carrying Liquefied Gases in Bulk, an international standard for LNG carriers. In addition, a surface crack propagation analysis was performed. Next, a methodology for assuming the initial through-crack size was developed to determine the size of the partial second barrier. The analysis was performed for 15 days, which is a possible return time after cracks are detected. Finally, the safety and suitability of the IMO Type-B for LNG cargo tanks required by international regulations were verified. For the accurate analysis of fatigue crack propagation, it is necessary to develop and verify the analysis procedure based on direct analysis and international regulations.

Status of National LNGC Deck Officer's Education/Training and Proposal of Improving Measures (국내 LNGC 항해사의 교육 및 훈련 실태 조사와 개선방안의 제시)

  • Kim Jong-Sung;Kim Chang-Je;Hong Jeong-Hyeok
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.17-22
    • /
    • 2006
  • Recently, the demand for LNG(Liquefied Natural Gas) increases in our country and all over the world as well as building order for LNGC Because LNG is very dangerous cargo, the special know-how and attention for cargo handling to prevent an accident is required and big demand for deck officers in future is expected Thus, more specific and systematic education and training program by means of investigating the status of national LNGC officer's education and training. To accomplish this, IMO regulation and LNGC education program for Korea Institute of Maritime and Fisheries Technology, national shipping companies and Japanese T company were analyzed.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.

Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System (NO96타입 LNG 방열시스템 Divinycell의 극저온 압축 강도 평가)

  • Choe, Yeong-Rak;Kim, Jeong-Hyeon;Kim, Jong-Min;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-355
    • /
    • 2016
  • Divinycell, which functions as both insulation and a supporting structure, is generally applied in the NO96-type liquefied natural gas (LNG) insulation system. Polymer-material-based Divinycell, which has a high strength and low weight, has been widely used in the offshore, transportation, wind power generation, and civil engineering fields. In particular, this type of material receives attention as an insulation material because its thermal conductivity can be lowered depending on the ambient temperature. However, it is difficult to obtain research results for Divinycell, even though the component materials of the NO96-type LNG cargo containment system, such as 36% nickel steel (invar steel), plywood, perlite, and glass wool, have been extensively studied and reported. In the present study, temperature and strain-rate dependent compressive tests on Divinycell were performed. Both the quantitative experimental data and elastic recovery are discussed. Finally, the mechanical characteristics of Divinycell were compared to the results of polyurethane foam insulation material.