• Title/Summary/Keyword: liquefied natural gas

Search Result 336, Processing Time 0.021 seconds

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading (폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2017
  • Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

Non-linear tensile behavior of high manganese steel based on elasto-plastic damage model (탄-소성 손상모델을 활용한 고망간강의 인장거동 모사에 관한 연구)

  • Kim, Jong-Hwan;Lee, Jeong-Ho;Kim, Seul-Kee;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.222-229
    • /
    • 2017
  • High manganese steel exhibits excellent mechanical properties with respect to strength and durability at low temperatures. Recently, high manganese steel has been considered as an alternative to existing materials, such as nickel steel and SUS304L for application as tank material for Liquefied Natural Gas (LNG) cargo containment systems. In the present study, tensile tests were performed at room and cryogenic temperatures in order to investigate the mechanical properties and non-linear tensile behavior of high manganese steel. In addition, elasto-plastic damage model was applied using the finite element analysis software ABAQUS via a user defined material subroutine (UMAT) to describe the material behavior. Finally, the results of the finite element simulations using the UMAT were compared to those of the tensile tests in order to validate the proposed UMAT. It has been demonstrated that the UMAT can effectively describe the non-linear tensile behavior of high manganese steel.

Case Study on Optimization of Send-out Operation in Liquefied Natural Gas Receiving Terminal (LNG 터미널 송출 운전 최적화 사례 연구)

  • Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.150-155
    • /
    • 2015
  • Recently, LNG receiving terminals have been widely constructed and expanded for an increase in LNG demand. Selection of the storage tank for send-out and estimation of send-out flow rate have significant influence to process operation and economics. In this study, a send-out flow rate of each storage tank is optimized in order to minimize the total BOG generation rate. Considering a size and characteristic of each storage tanks, BOG flow rates are estimated using a dynamic simulation with varying liquid levels in the tanks. The regression model is developed fitting BOG flow rates and tank liquid levels, which are boil off rate model to predict BOG flow rates with particular level data. The objective function and constraints including required total send-out flow rate and level limit in the tanks are formulated to optimize a send-out flow rate of each tank. This method for optimization of send-out operation is applied to the Incheon LNG receiving terminal considering two scenarios for various liquid levels and maximum and minimum required send-out flow rates. For maximum required send-out flow rate, this method achieves BOG reduction of 9% comparing with assumed conventional operation.

The Flow Behavior Characteristics of Methane with Phase Change at Low Heat Flux (저열유속에서 상변화를 수반하는 메탄의 유동거동특성)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A liquefied natural gas(LNG) in cryogenic liquid is converted back into gaseous form for distribution to residential and industrial consumers. In this re-gasification process, LNG supplies a plenty of cold thermal energy about $83.7{\times}10^4kJ/kg$. The LNG cold thermal energy is utilized for the re-liquefaction process of cryogenic fluids such as Nitrogen, Hydrogen and Helium, and ice manufacturing process and air-conditioning system in some advanced countries. Therefore, it is also necessary to establish the recovery systems of the LNG cold thermal energy around Incheon, Pyungtaek and Tongyung LNG import terminals in our country. Methane is used as working fluid in this paper, which is the major component of LNG over 85 % by volume, in order to investigate the flow behavior characteristics of LNG with phase change at low heat flux. This paper presents the effects of pipe diameters, pipe inclinations and saturation pressures on the flow boundaries of methane flowing in a cryogenic heat exchanger tube, together with those of nitrogen, propane, R11 and R134a. The outcomes obtained from this theoretical researches are also compared with previous experimental data. It was also found that the effect of pipe inclination on the methane flow boundaries was significant.

A Comparative Study on Power System Harmonics for Offshore Plants (해양플랜트 전력시스템의 고조파 비교분석에 관한 연구)

  • Kim, Deok-Ki;Lee, Won-Ju;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.900-905
    • /
    • 2016
  • The field of power system harmonics has been receiving a great deal of attention recently. This is primarily due to the fact that non-linear (or harmonic-producing) loads comprise an ever-increasing portion of what is handled at a typical industrial plant. The incidence rate of harmonic-related problems is low, but awareness of harmonic issues can still help increase offshore power plant system reliability. On the rare occasion that harmonics become a problem, this is either due to the magnitude of harmonics produced or power system resonance. This harmonic study used an electrical configuration for the offloading scenario of a Floating LNG (FLNG) unit, considering power load. This electrical network configuration is visible in the electrical network load flow study part of the project. This study has been carried out to evaluate the performance of an electric power system, focusing on the harmonic efficiency of an electrically driven motor system to ensure offshore plant safety. In addition, the design part of this study analyzed the electric power system of an FLNG unit to improve the safety of operation and maintenance.

Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges (270,000 kL급 LNG 저장 탱크 외조의 폭발량에 따른 손상도 해석적 평가)

  • Kim, Jang-Ho Jay;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.685-693
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridionally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.

Impact Tests and Numerical Simulations of Sandwich Concrete Panels for Modular Outer Shell of LNG Tank (모듈형 LNG 저장탱크 외조를 구성하는 샌드위치 콘크리트 패널의 충돌실험 및 해석)

  • Lee, Gye-Hee;Kim, Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.333-340
    • /
    • 2019
  • Tests using a middle velocity propulsion impact machine (MVPIM) were performed to verify the impact resistance capability of sandwich concrete panels (SCP) in a modular liquefied natural gas (LNG) outer tank, and numerical models were constructed and analyzed. $2{\times}2m$ specimens with plain sectional characteristics and specimens including a joint section were used. A 51 kg missile was accelerated above 45 m/s and impacted to have the design code kinetic energy. Impact tests were performed twice according to the design code and once for the doubled impact speed. The numerical models for simulating impact behaviors were created by LS-DYNA. The external steel plate and filled concrete of the panel were modeled as solid elements, the studs as beam elements, and the steel plates as elasto-plastic material with fractures; the CSCM material model was used for concrete. The front plate deformations demonstrated good agreement with those of other tests. However the rear plate deformations were less. In the doubled speed test for the plain section specimen, the missile punctured both plates; however, the front plate was only fractured in the numerical analysis. The impact energy of the missile was transferred to the filled concrete in the numerical analysis.

A Study on Price Competitiveness for LNG Bunkering in the Busan Port (부산항의 LNG 벙커링 가격 경쟁력 확보 방안)

  • KIM, Geun-Sub
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.123-133
    • /
    • 2016
  • LNG(Liquefied Natural Gas) bunkering has become an important issue with the enforcement of environment regulations in shipping industry required by the International Maritime Organization (IMO). With increased attention on LNG bunkering, many studies that focus on safety, regulation, demand forecasting, and the feasibility of LNG fueled ships have been carried out. However, most of the existing research has not included considerations of the price of LNG bunkering and its competitiveness. This paper, therefore, suggests ways to increase price competitiveness in the LNG bunkering market in the Busan Port. This paper analyzes the LNG bunkering supply mechanism by investigating various LNG bunkering terminal business in the LNG supply market. Factors that determine LNG bunkering price and its elasticity are also identified. Market players who want to operate LNG bunkering terminals in the Busan Port should introduce a merchandising trade method that is able to exclude the "Korea premium" in order to increase price competitiveness. This paper also suggests adoptable strategies such as the use of TPS (Terminal to Ship via Pipeline) type of bunkering service and the importance of location for minimizing initial investment cost.

Compression Dynamic Performance of Glass Bubble/Epoxy Resin Adhesion (글라스버블/에폭시 수지 접착부의 극저온 압축 동적 성능)

  • Bae, Jin-Ho;Hwang, Byeong-Kwan;Lee, Jae-Myung
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • Sloshing impact loads on liquefied natural gas (LNG) carr iers are the main issue of damage to the insulation system in LNG cargo containment system (LNG CCS). The damage to the insulation system would be fatal in maintaining a temperature-savings environment in LNG CCS. The typical method is to enhance the insulation materials that can maintain a constant cryogenic temperature. Insulation materials consist of polyurethane foam and plywood, an adhesive for bonding these two materials. This study intends to improve the absorption energy of the material when the impact load is applied by creating a glass bubble/epoxy composite resin as part of the insulation. The experimental scenarios consider the effect of temperature ($20^{\circ}C$, $-163^{\circ}C$), glass bubble weight fraction in epoxy resin through free fall experiments. Experiments have shown that if the glass bubble additive reaches 20 wt.%, the cryogenic absorption energy is a maximum performance and that 0 wt.% has a maximum ambient absorption energy. However, the agglomeration has been occurred due to deterioration of the stirring performance if weight fraction was 20 wt.% and the result of 0 wt.% have been revealed that ambient absorption energy is significantly lower.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.