• Title/Summary/Keyword: liquefaction resistance of sand

Search Result 54, Processing Time 0.03 seconds

Analysis of behavioral characteristics of liquefaction of sand through repeated triaxial compression test and numerical analysis

  • Hyeok Seo;Daehyeon Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.165-177
    • /
    • 2024
  • Liquefaction phenomenon refers to a phenomenon in which excess pore water pressure occurs when a dynamic load such as an earthquake is rapidly applied to a loose sandy soil ground where the ground is saturated, and the ground loses effective stress and becomes liquid. The laboratory repetition test for liquefaction evaluation can be performed through a repeated triaxial compression test and a repeated shear test. In this regard, this study attempted to evaluate the effects of the relative density of sand on the liquefaction resistance strength according to particle size distribution using repeated triaxial compression tests, and additional experimental verification using numerical analysis was conducted to overcome the limitations of experimental equipment. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the classification of soil, and the liquefaction resistance strength of the SP sample close to SW was quite high. As a result of numerical analysis, it was confirmed that the liquefaction resistance strength increased as the confining pressure increased under the same relative density, and the liquefaction resistance strength did not decrease below a certain limit even though the confining pressure was significantly reduced at a relatively low relative density. This is judged to be due to a change in confining pressure according to the depth of the ground. As a result of analyzing the liquefaction resistance strength according to the frequency range, it was confirmed that there was no significant difference from the laboratory experiment results in the basic range of 0.1 to 1.0 Hz.

Experimental Analysis of Liquefaction Resistance Characteristics of Silica Sand Used in Earthquake Simulation Tests (국내 지진 모의시험에 이용되는 규사의 액상화 저항특성에 관한 실험적 분석)

  • Choi, Jaesoon;Jin, Yunhong;Baek, Woohyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.5-13
    • /
    • 2022
  • In this study, dynamic characteristics and liquefaction resistance characteristics of silica sand which is used to simulate sandy layer were conducted using the cyclic triaxial test according to the relative density difference. The difference in liquefaction resistance with the relative density was confirmed through the test results, which the relative density conditions were changed to 40%, 60%, and 80%, and the cyclic resistance ratio (CRR) curve of the silica sand was obtained. In addition, in order to examine the validity of the liquefaction resistance ratio (CRR) curve, artificial silica sand ground was created, and liquefaction potential was evaluated through the simple assessment method and the detailed assessment method, and the safety factors of each were compared.

Liquefaction Characteristic of Pohang Sand Based on Cyclic Triaxial Test (진동삼축시험을 통한 포항 지역 사질토의 액상화 저항 특성 연구)

  • Hwang, Byongyoun;Han, Jin-Tae;Kim, Jongkwan;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.21-32
    • /
    • 2020
  • In this study, series of cyclic triaxial tests and shear velocity measurement were conducted using Pohang sand, which was taken from liquefaction observed area, to verify the liquefaction characteristics of Pohang. The cyclic resistance ratio(CRR) was derived based on the test results. A specimen was reconstituted into 40% and 80% relative density conditions and then a series of cyclic triaxial tests and shear-wave velocity measurement were conducted. As a result, the effect of particle distribution and relative density to liquefaction resistance was verified. The liquefaction resistance of Pohang sand was evaluated by comparing with other liquefaction resistance of sands from previous research. In addition, the liquefaction resistance curve from field observation data was used to verify the reliability of results from this study by measured shear-wave velocity.

Dynamic Behaviors of Shelly Sand in Cyclic Simple Shear Test (반복단순전단 시험에 의한 패각질 모래의 동적 거동)

  • Yoon, Yeo-Won;Yoon, Kil-Lim;Choi, Jae-Kwon;Kim, Jae-Kwon;Kim, Seung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1358-1366
    • /
    • 2006
  • In order to study the effects of shell contents on the liquefaction resistance of the shelly sand, NGI cyclic simple shear tests were performed for the shelly sands with shell contents of 0%, 5%, 10%, 20% and 30% under the effective vertical stress of 50kPa, 100kPa and 150kPa for 40% and 55% of relative density, respectively. Cyclic simple shear test results showed that for the low effective vertical stress, liquefaction resistance increased rapidly with the increase of shell contents in both 40% and 55% relative density. On the other hand, for the high effective vertical stress, the liquefaction resistance increased slightly in 40% relative density whereas the resistance was almost same in 55% relative density. Liquefaction resistance decreased with increasing effective vertical stress for both 40% and 55% relative density. In the same effective vertical stress and shell contents, liquefaction resistance increased with the increase of relative density of sands.

  • PDF

Study on small resistance regions in post-liquefaction shear deformation based on soil's compressive properties

  • Jongkwan Kim;Jin-Tae Han;Mintaek Yoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.295-301
    • /
    • 2024
  • Understanding the post-liquefaction shear behavior is crucial for predicting and assessing the damage, such as lateral flow, caused by liquefaction. Most studies have focused on the behavior until liquefaction occurs. In this study, we performed undrained multi-stage tests on clean sand, sand-silt mixtures, and silty soils to investigate post-liquefaction shear strain based on soil compressibility. The results confirmed that it is necessary to consider the soil compressibility and the shape of soil particles to understand the post-liquefaction shear strain characteristics. Based on this, an index reflecting soil compressibility and particle shape was derived, and the results showed a high correlation with post-liquefaction small resistance characteristic regardless of soil type and fine particle content.

Effects of loading frequency and specimen size on the liquefaction resistance of clean sand

  • Sung-Sik Park;Dong-Eun Lee;Dong-Kiem-Lam Tran
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • This study investigates the effects of loading frequency (f) and specimen size on the liquefaction resistance of clean sand. A series of cyclic direct simple shear tests were conducted on Jumunjin sand with varying consolidated relative densities (40% and 80%), f values (0.05, 0.10, and 0.20 Hz), and diameter to height (D/H) ratios (3.63, 3.18, 2.82, and 2.54). The results demonstrated the significant influence of f and D/H ratio on the number of cycles to liquefaction (Ncyc-liq) and the cyclic resistance ratio (CRR15). It was observed that increasing f linearly increased Ncyc-liq. Increasing the specimen height also led to higher Ncyc-liq values irrespective of the f or relative density. Moreover, a positive correlation between CRR15 and f indicated that higher f yielded higher CRR15. This relationship was more pronounced in dense sand than in loose sand. Specimen height also significantly affected CRR15, with increasing the specimen height resulting in higher CRR15 values. Furthermore, the effect of f on CRR15 was less significant compared to the influence of specimen height. The effect of f on the normalized cyclic resistance ratio (NCRR) was relatively negligible for loose sand but more substantial for dense sand depending on the D/H ratio. Data analysis revealed that the NCRR generally decreases as the D/H ratio increases. An interpolation formula was provided to calculate the NCRR based on the D/H ratio regardless of the f and relative density.

An experimental investigation on dynamic properties of various grouted sands

  • Hsiao, Darn-Horng;Phan, Vu To-Anh;Huang, Chi-Chang
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • Cyclic triaxial and resonant column tests were conducted to understand the beneficial effects of various grouted sands on liquefaction resistance and dynamic properties. The test procedures were performed on a variety of grouted sands, such as silicate-grouted sand, silicate-cement grouted sand and cement-grouted sand. For each type of grout, sand specimen was mixed with a 3.5% and 5% grout by volume. The specimens were tested at a curing age of 3, 7, 28 and 91 days, and the results of the cyclic stress ratio, the maximum shear modulus and the damping ratio were obtained during the testing program. The influence of important parameters, including the type of grout, grout content, shear strain, confining pressure, and curing age, were investigated. Results indicated that sodium silicate grout does not improve the liquefaction resistance and shear modulus; however, silicate-cement and cement grout remarkably increased the liquefaction resistance and shear modulus. Shear modulus decreased and damping ratio increased with an increase in the amplitude of shear strain. The effect of confining pressure on clean sand and sodium silicate grouted sand was found to be insignificant. Furthermore, a nonlinear regression analysis was used to prove the agreement of the shear modulus-shear strain relation presented by the hyperbolic law for different grouted sands, and the coefficients of determination, $R^2$, were nearly greater than 0.984.

Liquefaction Strength of Shelly Sand in Cyclic Simple Shear Test (반복단순전단 시험에 의한 패각질 모래의 액상화 강도)

  • Yoon, Yeowon;Yoon, Gillim;Choi, Jaekwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.69-76
    • /
    • 2007
  • The sands which use for soil improvement of soft ground at coastal area contain more or less amount of shells. In this research the effects of shell contents on the liquefaction resistance of the shelly sand were studied. NGI cyclic simple shear tests were performed for the shell-sands with shell contents of 0%, 5%, 10%, 20%, 30% under the effective vertical stress of 50kPa, 100kPa and 150kPa for 40% and 55% of relative density, respectively. Cyclic simple shear test results showed that for the low effective vertical stress, the liquefaction resistance increased rapidly with increase of shell contents in both 40% and 55% relative density. On the other hand, for the high effective vertical stress, the liquefaction resistance increased slightly in 40% relative density and was almost same in 55% relative density. Liquefaction resistance decreased with increasing effective vertical stress for both 40% and 55% relative density. In the same effective vertical stress and shell contents, liquefaction resistance increased with the increase of relative density.

  • PDF

Undrained Behavior on Saemangeum Dredged Sands (새만금 준설모래의 비배수 거동)

  • Jeong, Sang-Guk;Kang, Kwon-Soo;Yang, Jae-Hyouk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.193-203
    • /
    • 2002
  • The results of an experimental study on Saemangeum dredged sands are presented. Undrained triaxial compression tests were performed with there different initial relative densities, namely 18, 34, and 50%, intend to evaluate undrained Behavior. All undrained triaxial compression tests were performed under static loading conditions. Undrained triaxial compression tests were exhibited complete static liquefaction, zero effective confining pressure and zero stress difference at lower confining pressures. As confining pressures were increased, the effective stress paths indicated increasing resistance to static liquefaction by showing increasing dilatant tendencies. The fines and larger particles create a particle structure with high compressibility at lower confining pressure. The effect of increasing relative density was to increase the resistance of the sand against static liquefaction by making the sand more dilatant.

Evaluation of Input Parameters in Constitutive Models Based on Liquefaction Resistance Curve and Laboratory Tests (액상화 저항곡선과 실내실험에 기반한 구성모델 입력변수의 산정)

  • Tung, Do Van;Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.35-46
    • /
    • 2020
  • The input parameters for numerical simulation of the liquefaction phenomenon need to be properly evaluated from laboratory and field tests, which are difficult to be performed in practical situations. In this study, the numerical simulation of the cyclic direct simple shear test was performed to analyze the applicability of Finn and PM4Sand models among the constitutive models for liquefaction simulation. The analysis results showed that the Finn model properly predicted the time when the excess pore water pressure reached the maximum, but failed to simulate the pore pressure response and the stress-strain behavior of post-liquefaction. On the other hand, the PM4Sand model properly simulated those behaviors of the post liquefaction. Finally, the evaluation procedure and the equations of the input parameters in the PM4Sand model were developed to mach the liquefaction cyclic resistance ratio corresponding to design conditions.