• 제목/요약/키워드: lipopolysaccharide (LPS)

검색결과 1,921건 처리시간 0.033초

배초향이 RAW 264.7의 염증인자 생성에 미치는 영향 (Agastache rugosa modulates productions of inflammatory mediators in RAW 264.7 stimulated by lipopolysaccharide)

  • 박완수
    • 대한본초학회지
    • /
    • 제37권1호
    • /
    • pp.41-50
    • /
    • 2022
  • Objectives : The aim of this study was to investigate the effect of water extract of Agastache rugosa (AR) on productions of inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. Methods : Cell viabilities were measured with MTT assay. The production of nitric oxide (NO) from RAW 264.7 cells was measured with Griess reagent assay. The production of cytokines in RAW 264.7 cells was measured with multiplex cytokine assay. Results : AR showed no cytotoxicity on RAW 264.7 cells. AR at concentrations of 25, 50, 100, and 200 ㎍/mL significantly inhibited NO production in LPS-stimulated RAW 264.7 cells. AR at concentrations of 50, 100, and 200 ㎍/mL significantly inhibited productions of TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50 and 200 ㎍/mL significantly inhibited productions of RANTES (CCL5) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 100 ㎍/mL significantly inhibited productions of macrophage inflammatory protein-1β in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50, 100, and 200 ㎍/mL significantly increased productions of IP-10 (CXCL10) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 100 and 200 ㎍/mL significantly increased MCP-1 (CCL-2) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50 and 100 ㎍/mL significantly increased productions of IL-10 in LPS-stimulated RAW 264.7 cells. Conclusions : AR might have immunomodulatory effects on productions of NO, cytokines, and chemokines in LPS-stimulated RAW 264.7 mouse macrophages.

Vibrio vulnificus, Escherichia coli 및 Salmonella typhimurium Lipopolysaccharide(LPS)의 지방산 조성 (Fatty Acid Composition of Vibrio vulnificus, Escherichia coli and Salmonella typhimurium Lipopolysaccharide(LPS))

  • 이봉헌;박장수;강신원
    • 한국응용과학기술학회지
    • /
    • 제11권2호
    • /
    • pp.65-68
    • /
    • 1994
  • Vibrio vulnificus에서 lipopolysaccharide(LPS)를 추출하여 지방산 조성을 분석한 후 이 결과를 Escherichia coli LPS와 Salmonella typhimurium LPS의 것들과 비교하였다. Vibrio vulnificus LPS의 주 지방산은 myristic acid(C14:0, 41.37%)이었고 Escherichia coli LPS는 lauric acid(C12:0, 37.03%), Salmonella typhimurium LPS는 capric acid(C10:0, 48.60%)로 서로 달랐으나 이 세가지 지방산이 각 LPS의 주성분이었다(70%이상).

Anti-inflammatory Effect of Scutellariae Radix

  • Lee, Eun
    • 한국자원식물학회지
    • /
    • 제20권6호
    • /
    • pp.548-552
    • /
    • 2007
  • This research is the basic research to develop new anti-inflammatory medicine by feeding Scutellariae Radix extract to lipopolysaccharide(LPS) exposed rats, and analyzed it's effect on inflammatory response by LPS derivation. As a result, Plasma interleukin-$1\beta(IL-1\beta)$ and Plasma interleukin-6(IL-6) concentration showed the highest point at 5h after LPS injection, and in this time, the concentration of $IL-1\beta$ and IL-6 in the Scutellariae Radix extract groups at 200mg/kg and 300mg/kg showed lower values than that of control group. Plasma tumor necrosis $factor-\alpha(TNF-\alpha)$ concentration after LPS injection showed the highest point at 2h and showed similar level till at 5h. $TNF-\alpha$ concentration at 2h after LPS injection showed the low value only in the Scutellariae Radix extract 300mg/kg group compared to others, and in 5h, the all Scutellariae Radix extract groups showed lower value than that of the control group. Plasma interleukin-10(IL-10) concentration increased at 2h after LPS injection and reached the highest at 5h. After LPS injection the IL-10 concentration at 2h, the Scutellariae Radix extract injection group at 300mg/kg showed higher value than that of the others, and in 5h after LPS injection, Scutellariae Radix extract 200mg and 300mg groups showed higher value than the control group. Concluding from the above results, in inflammatory response by LPS derivation, the Scutellariae Radix gives positive effect.

Dapsone modulates lipopolysaccharide-activated bone marrow cells by inducing cell death and down-regulating tumor necrosis factor-α production

  • Kwon, Min-Ji;Joo, Hong-Gu
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.744-749
    • /
    • 2018
  • Dapsone, an antibiotic, has been used to cure leprosy. It has been reported that dapsone has anti-inflammatory activity in hosts; however, the anti-inflammatory mechanism of dapsone has not been fully elucidated. The present study investigated the anti-inflammatory effects of dapsone on bone marrow cells (BMs), especially upon exposure to lipopolysaccharide (LPS). We treated BMs with LPS and dapsone, and the treated cells underwent cellular activity assay, flow cytometry analysis, cytokine production assessment, and reactive oxygen species assay. LPS distinctly activated BMs with several characteristics including high cellular activity, granulocyte changes, and tumor necrosis factor alpha ($TNF-{\alpha}$) production increases. Interestingly, dapsone modulated the inflammatory cells, including granulocytes in LPS-treated BMs, by inducing cell death. While the percentage of Gr-1 positive cells was 57% in control cells, LPS increased that to 75%, and LPS plus dapsone decreased it to 64%. Furthermore, dapsone decreased the mitochondrial membrane potential of LPS-treated BMs. At a low concentration ($25{\mu}g/mL$), dapsone significantly decreased the production of $TNF-{\alpha}$ in LPS-treated BMs by 54%. This study confirmed that dapsone has anti-inflammatory effects on LPS-mediated inflammation via modulation of the number and function of inflammatory cells, providing new and useful information for clinicians and researchers.

Asiaticoside가 RAW 264,7 세포에서 Inducible nitric oxide synthase와 Cyclooxygenase-2에 미치는 항염증 작용에 관한 연구 (Anti-inflammatory Effects of Asiaticoside on Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in RAW 264.7 Cell Line)

  • 주상섭;배옥남;정진호
    • Toxicological Research
    • /
    • 제19권1호
    • /
    • pp.33-37
    • /
    • 2003
  • Asiaticoside has been tested for the ability as an anti-inflammatory drug using lipopolysaccharide (LPS)-stimulated macrophage cell line (RAW 264.7 cell). LPS treatment induced dramatically inducible nitric oxide synthase (iNOS) in RAW cells. However, asiaticoside inhibited LPS-stimulated iNOS induction in a concentration-dependent manner. Especially, higher concentrations (>50 $\mu\textrm{M}$) of asiaticoside completely blocked iNOS induction. In addition, LPS-stimulated expression of inducible cyclooxygenase (COX-2) and interleukin-1 $\alpha$ (IL-1 $\alpha$) was inhibited by asiaticoside treatment. Asiaticoside up to 50 $\mu\textrm{M}$ still required to inhibit COX-2 and IL-1 $\alpha$ induced by LPS. Consistent with these findings, treatment with asiaticoside suppressed do novo synthesis and cellular accumulation of prostaglandin $E_2$ to a lesser extent, suggesting that asiaticoside blocked the induction as well as the activity of COX-2 These results suggest the possibility that asiaticoside may be effective therapeutic agents for septic shock and other inflammatory diseases.

LPS로 자극한 RAW267.4 세포에서 황금(黃芩), 황련(黃連) 배합 비율에 따른 TYPE-1 interferon 억제효과 (Inhibitory Effect of Mix proportion of Root of Scutellaria baicalensis and Coptis chinensis on LPS-induced type-I interferon Production in RAW264.7 Cells)

  • 국윤범
    • 대한한의학방제학회지
    • /
    • 제16권2호
    • /
    • pp.155-162
    • /
    • 2008
  • Objectives : The present study was designed to investigate corelation between mix proportion of Scutellaria baicalensis (SB) and Coptis chinensis (CC) on lipopolysaccharide (LPS)-induced TYPE-1 interferon production. Methods : I examined TYPE-1 interferon, interferon regulating factor (IRF)-1,7 and interleukin(IL)-10 production on LPS-induced RAW264.7 cells to evaluate inhibitory effect of mix proportion of SB and CC using real time PCR. Results : Mixture of SB and CC regulated TYPE-1 interferon and IRF-1,7 mRNA expression with SB dose dependent manner, while maintained IL-10 mRNA expression on LPS-induced RAW264.7 cells. Conclusion : In mixture of SB and CC, SB plays a key role in reducing TYPE-1 interferon through inactivation IRF-1,7. Furthermore mixture of SB and CC maintained IL-10 mRNA level. Collectively, this results suggest that SB confer beneficial effects in autoimmune diseases clinically.

  • PDF

Anti-inflammatory Effect of an Ethanolic Extract of Myagropsis yendoi in Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Salih, Sarmad Ali;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • 제17권1호
    • /
    • pp.27-35
    • /
    • 2014
  • Marine brown algae have been identified as a rich source of structurally diverse bioactive compounds. Whether Myagropsis yendoi ethanolic extracts (MYE) inhibit inflammatory responses was investigated using lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. MYE inhibited LPS-induced nitric oxide (NO) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase in BV-2 cells. MYE also reduced the production of pro-inflammatory cytokines in LPS-stimulated BV-2 cells. LPS-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) transcriptional activity and NF-${\kappa}B$ translocation into the nucleus were significantly inhibited by MYE treatment through preventing degradation of the inhibitor ${\kappa}B-{\alpha}$. Moreover, MYE inhibited the phosphorylation of AKT, ERK, JNK, and p38 mitogen-activated protein kinase in LPS-stimulated BV-2 cells. These results indicate that MYE is a potential source of therapeutic or functional agents for neuroinflammatory diseases.

패혈성 쇼크에서 간의 유황함유 아미노산 대사 (Hepatic Metabolism of Sulfur Amino Acids During Septic Shock)

  • 강건욱;김상겸
    • 약학회지
    • /
    • 제51권6호
    • /
    • pp.383-388
    • /
    • 2007
  • It has been reported that sulfur-containing intermediates or products in the transsulfuration pathway including S-adenosylmethionine, 5'-methylthioadenosine, glutathione and taurine can prevent liver injury mediated by inflammation response induced by lipopolysaccharide (LPS) treatment. The present study examines the modulation of hepatic metabolism of sulfur amino acid in a model of acute sepsis induced by LPS treatment (5 mg/kg, iv). Serum TNF-alpha and hepatotoxic parameters were significantly increased in rats treated with LPS, indicating that LPS results in sepsis at the doses used in this study. LPS also induced oxidative stress determined by increases in malondialdehyde levels and decreases in total oxy-radical scavenging capacities. Hepatic methionine and glutathione concentrations were decreased, but S-adenosylho-mocysteine, cystathionine, cysteine, hypotaurine and taurine concentrations were increased. Hepatic protein expression of methionine adenosyltransferase, cystathionine beta-synthase and cysteine dioxygenase were induced, but gamma-glutamylcysteine ligase catalytic subunit levels were decreased. The results show that sepsis activates transsulfuration pathway from methionine to cysteine, suggesting an increased requirement for methionine during sepsis.

음곡(陰谷) 백복령(白茯苓)약침이 Lipopolysaccharide로 유도된 흰쥐의 염증성 신(腎) 손상에 미치는 영향 (The Effect of Hoelen Herbal-acupuncture at $KI_{10}$ on Lipopolysaccharide Induced Nephritis in Rats)

  • 김민식;김병수;임윤경
    • Journal of Acupuncture Research
    • /
    • 제31권2호
    • /
    • pp.65-74
    • /
    • 2014
  • Objectives : The purpose of this study is evaluating the effect of Hoelen Herbal-acupuncture (HO-HA) at $KI_{10}$(Umgok) on Lipopolysaccharide(LPS) induced nephritis in rats. Methods : The experimental rats were assigned to four groups; normal, LPS, saline, HO-HA groups. LPS(2 mg/kg) was administered to the rats in LPS, saline and HO-HA groups to induce acute inflammatory kidney damage. Saline injection and HO-HA were administered at $KI_{10}$ three times a week. Blood samples were taken from the rats for analysis of white blood cell(WBC), neutrophil, blood urea nitrogen(BUN), creatinine TNF-${\alpha}$, CINC-1. Urine samples were taken from the rats for analysis of urinal volume, creatinine and total protein. The kidney samples were taken from the rats for analysis of renal myeloperoxIdase(MPO). Results : HO-HA suppressed the increases of WBC and neutrophils in blood, BUN, creatinine, TNF-${\alpha}$ and CINC-1 in serum, and MPO in kidney of LPS-stimulated rats. In addition, HO-HA inhibited the decrease of urinary volume in LPS-stimulated rats. Conclusions : HO-HA has therapeutic effects on LPS-induced inflammatory kidney damage in rats. Further studies may be needed for clinical use of HO-HA.

Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide

  • Choi, E.Y.;Lee, S.S.;Hyeon, J.Y.;Choe, S.H.;Keum, B.R.;Lim, J.M.;Park, D.C.;Choi, I.S.;Cho, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권11호
    • /
    • pp.1664-1674
    • /
    • 2016
  • This research analyzed the effect of ${\beta}$-glucan that is expected to alleviate the production of the inflammatory mediator in macrophagocytes, which are processed by the lipopolysaccharide (LPS) of Escherichia. The incubated layer was used for a nitric oxide (NO) analysis. The DNA-binding activation of the small unit of nuclear factor-${\kappa}B$ was measured using the enzyme-linked immunosorbent assay-based kit. In the RAW264.7 cells that were vitalized by Escherichia coli (E. coli) LPS, the ${\beta}$-glucan inhibited both the combatant and rendering phases of the inducible NO synthase (iNOS)-derived NO. ${\beta}$-Glucan increased the expression of the heme oxygenase-1 (HO-1) in the cells that were stimulated by E. coli LPS, and the HO-1 activation was inhibited by the tin protoporphyrin IX (SnPP). This shows that the NO production induced by LPS is related to the inhibition effect of ${\beta}$-glucan. The phosphorylation of c-Jun N-terminal kinases (JNK) and the p38 induced by the LPS were not influenced by the ${\beta}$-glucan, and the inhibitory ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) decomposition was not influenced either. Instead, ${\beta}$-glucan remarkably inhibited the phosphorylation of the signal transducer and activator of transcription-1 (STAT1) that was induced by the E. coli LPS. Overall, the ${\beta}$-glucan inhibited the production of NO in macrophagocytes that was vitalized by the E. coli LPS through the HO-1 induction and the STAT1 pathways inhibition in this research. As the host immune response control by ${\beta}$-glucan weakens the progress of the inflammatory disease, ${\beta}$-glucan can be used as an effective immunomodulator.