• Title/Summary/Keyword: lipogenic enzymes activity

Search Result 18, Processing Time 0.021 seconds

Growth Associated Hormones Response and Fat Metabolism Change in Finishing Pigs Fed with n-Methyl-d, L-Aspartate

  • Xi, Gang;Xu, Zirong;Xiao, Ping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.1026-1030
    • /
    • 2002
  • A trial was conducted to investigate the effect of dietary NMA on several growth associated hormones and fat metabolism in finishing pigs. A total of 84 crossbred finishing pigs (average initial BW of $56{\pm}$0.37kg) were divided into 6 pens, 14 pigs per pen (7 gilts and 7 barrows per pen). 3 pens of pigs were fed with control diet (corn-soybean meal) and the others were fed control diet addition with 50 mg/kg NMA. During the trial, all pigs were given free access to feed and water. After 44 days trial, 8 pigs from each treatment (4 gilts and 4 barrows, weight similar to average group weight, $86.94{\pm}0.71kg$ for control group, and $90.55{\pm}1.51kg$ for NMA treated group) were sacrificed to collect the sample of the liver, longissimus muscle, subcutaneous fat (10th rib). The addition of NMA in diet increased the IGF-I, Insulin, T3, T4 levels in serum by 50.68% (p<0.05), 38.36% (p<0.05), 123.33% (p<0.01), 60.58% (p<0.03), respectively. Meanwhile, IGF-I level in the liver and the muscle were increased with 17.83% (p<0.03) and 26.00% (p<0.03) with addition of NMA. The data from subcutaneous fat (10th rib) analysis showed that supplement of 50 mg/kg NMA decreased the total activities of malic dehydrogenase (MDH) by 20.54% (p<0.05), glucose-6- phosphate dehydrogenase (G-6-DPH) by 16.97% (p<0.05), and decreased the specific activities of MDH and G-6-DPH by 37.46% (p<0.01) and 35.06% (p<0.01), respectively. The hormone sensitive lipase (HSL) total activity was increased by 25.00% (p<0.05) in NMA treated pigs. These results indicated that addition of 50 mg/kg NMA to diet can induce the endocrine great change in finishing pigs, furthermore, inhibit the fat synthesis through suppressing lipogenic enzymes and promote the fat degradation by elevating HSL activity in finishing pigs.

Plant Proteins Differently Affect Body Fat Reduction in High-fat Fed Rats

  • Kim, Joo-Hee;Lee, Hyo-Jung;Kim, Ji-Yeon;Kim, Mi-Kyung;Kwon, O-Ran
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.223-227
    • /
    • 2012
  • This study examined the effects of corn gluten (CG), wheat gluten (WG), and soybean protein isolate (SPI), as well as their hydrolysates, on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=70) were fed a high-fat diet (40% of the calories were fat) for 4 weeks. Rats were then randomly divided into seven groups and were fed isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate (CGH group), intact WG (WG group), WG hydrolysate (WGH group), intact SPI (SPI group), and SPI hydrolysate (SPIH group). Body weight gain, adipose tissue weights, lipid profiles in plasma and liver; and hepatic activities of carnitine palmitoyl transferase, fatty acid synthase (FAS), malic enzyme, and glucose-6-phosphate dehydrogenase were assessed. The CGH group showed significant weight reduction compared with the other groups. Epididymal fat pad and plasma triglycerides in the CGH group were the lowest and were significantly different than those in the control group. FAS activity in the CGH group was significantly lower than that in the other groups. In conclusion, the CGH diet of these experimental animals demonstrated a weight-reducing effect by lowering the adipose tissue weight and by affecting the activities of hepatic lipogenic enzymes.

Desalinated underground seawater of Jeju Island (Korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-BHP treated HepG2 cells

  • Noh, Jung-Ran;Gang, Gil-Tae;Kim, Yong-Hoon;Yang, Keum-Jin;Lee, Chul-Ho;Na, O-Su;Kim, Gi-Ju;Oh, Won-Keun;Lee, Young-Don
    • Nutrition Research and Practice
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study was performed to investigate the effect of desalinated underground seawater (named as 'magma seawater', MSW) of Jeju Island in Korea on lipid metabolism and antioxidant activity. MSW was collected from underground of Han-Dong in Jeju Island, and freely given to high fat diet (HFD)-fed C57BL/6 mice for 10 weeks. Although there were no significant differences in the body weight changes and plasma lipid levels, hepatic triglyceride levels were significantly lower in the MSW group than in the normal tap water (TW)-drunken control group. Furthermore, the activity of fatty acid synthase (FAS) was significantly decreased and carnitine palmitoyltransferase (CPT) activity was increased in MSW group compared to TW group. Similarly, real-time PCR analysis revealed that mRNA expressions of lipogenic genes were lowered in MSW groups compared to the control group. In a morphometric observation on the liver tissue, accumulation of fats was remarkably reduced in MSW group. Meanwhile, in vitro assay, tree radical scavenging activity measured by using diphenylpicrylhydrazyl (DPPH) was increased in MSW group. The 2'-7'-dichlorofluorescein diacetate (DCF-DA) staining followed with fluorescent microscopy showed a low intensity of fluorescence in MSW-treated HepG2 cells, compared to TW-treated HepG2 cells, which indicated that the production of reactive oxygen species by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was decreased by MSW treatment. The antioxidant effect of MSW on t-BHP-induced oxidative stress in HepG2 cells was supported by the increased activities of intracellular antioxidant enzymes such as catalase and glutathione reductase. From these results, we speculate that MSW has an inhibitory effect on lipogenesis in liver and might play a protective role against cell damage by t-BHP-induced oxidative stress.

Inhibitory Effects of S-Allylmercaptocysteine Derived from Aged Garlic on Cholesterol Biosynthesis in Hepatocytes

  • Yang, Seung-Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2013
  • The present study was undertaken to elucidate the mechanisms underlying the cholesterol-lowering effect of S-allylmercaptocysteine (SAMC) derived from aged garlic. Rat hepotocytes and HepG2 cells were used to determine the short-term effects of SAMC on [$^{14}C$] acetate incorporation into cholesterol, and several enzymatic steps. The cells were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and treated with 20, 40, 60 and 80 ${\mu}g/ml$ of SAMC. At concentration of 20~40 ${\mu}g/ml$, no significant cells viability effect was noted during those incubation periods. However, at a concentration 60 ${\mu}g/ml$, cell viability decreased approximately 50% compared with the control. The treatment of cells with 5, 10, 15, and 20 ${\mu}g/ml$ of SAMC resulted in a marked of [$^{14}C$]-acetate incorporation into cholesterol. At concentration of 15 ${\mu}g/ml$, the cholesterol synthesis was inhibited 79% in cells. The activities of lipogenic enzymes, fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G3PDH) were measured in culture hepatocytes treated with the inhibitors. The activity of FAS in cells treated with 0.95 nmol SAMC was 19% lower than that of nontreated cells, and no affected G6PDH activity, 3-hydroxy-3-methylglutaryl Co A activity was decreased at concentration dependant manner. The present study demonstrates that SAMC is effective in inhibiting cholesterol biosynthesis.

Supplementation Effects of $C_{18:2}$ or $C_{18:3}$ Rich-oils on Formations of CLA and TVA, and Lipogenesis in Adipose Tissues of Sheep

  • Choi, S.H.;Lim, K.W.;Lee, H.G.;Kim, Y.J.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1417-1423
    • /
    • 2007
  • The present study was conducted to investigate the supplementation effects of $C_{18:2}$ rich-soybean oil or $C_{18:3}$ rich-perilla oil (7% of total diet, DM basis) for 12 weeks on plasma metabolites, fatty acid profile, in vitro lipogenesis, and activities of LPL and FAS in adipose tissue of sheep. The treatments were basal diet (Control), $C_{18:2}$ rich-soybean oil supplemented diet (SO-D) and $C_{18:3}$ rich-perilla oil supplemented diet (PO-D). All the sheep were fed the diets consisting of roughage to concentrate in the ratio of 40:60 (DM basis). Oil supplemented diets (SO-D and PO-D) slightly increased contents of triglyceride (TG) and total cholesterol (TC), proportions of both cis-9 trans-11 and trans-10 cis-12 CLA and TVA, but lowered (p<0.01) those of $C_{18:0}$ compared to the control diet. No differences were observed in the contents of TG and TC and proportions of fatty acids in plasma between supplemented oils. Oil supplemented diets slightly increased the proportions of cis-9 trans-11 and trans-10 cis-12 types of CLA in subcutaneous adipose tissue of sheep compared to the control diet. The rate of lipogenesis with acetate was higher (p<0.01) for intermuscular- and subcutaneous adipose tissues than that for intramuscular adipose tissue, while that with glucose did not differ among fat locations in sheep fed SO-D. No differences were observed in the rate of lipogenesis between substrates in all fat locations. The rates of lipogenesis with glucose increased only in the intermuscular- (p<0.01) and subcutaneous adipose tissue (p<0.005) compared to those with acetate. The rates of lipogenesis with acetate were the highest in the intermuscular and intramuscular adipose tissue of the sheep fed PO-D. Oil supplemented diets slightly increased the rate of lipogenesis with glucose for all fat locations. Supplementation of oils to the diet numerically increased the fatty acid synthase activity but did not affect the lipoprotein lipase activity in subcutaneous adipose tissue.

SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene

  • Omura, Yasushi;Nishio, Yoshihiko;Takemoto, Tadashi;Ikeuchi, Chikako;Sekine, Osamu;Morino, Katsutaro;Maeno, Yasuhiro;Obata, Toshiyuki;Ugi, Satoshi;Maegawa, Hiroshi;Kimura, Hiroshi;Kashiwagi, Atsunori
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2009
  • Sterol regulatory element-binding protein (SREBP)-1c plays a crucial role in the regulation of lipogenic enzymes in the liver. We previously reported that an X-chromosome-linked RNA binding motif (RBMX) regulates the promoter activity of Srebp-1c. However, still unknown was how it regulates the gene expression. To elucidate this mechanism, we screened the cDNA library from mouse liver by yeast two-hybrid assay using RBMX as bait and identified scaffold attachment factor B1 (SAFB1). Immunoprecipitation assay demonstrated binding of SAFB1 to RBMX. Chromatin immunoprecipitation assay showed binding of both SAFB1 and RBMX to the upstream region of Srebp-1c gene. RNA interference of Safb1 reduced the basal and RBMX-induced Srebp-1c promoter activities, resulting in reduced Srebp-1c gene expression. The effect of SAFB1 overexpression on Srebp-1c promoter was found only in the presence of RBMX. These results indicate a major role for SAFB1 in the activation of Srebp-1c through its interaction with RBMX.

Effect of Dietary n-3 Fatty Acids and Fat Unsaturation on Plasma Lipids and Lipoproteins in Rats (식이의 n-3 지방산과 지방의 불포화도가 혈장지질 조성에 미치는 영향)

  • 박현서
    • Journal of Nutrition and Health
    • /
    • v.25 no.7
    • /
    • pp.555-568
    • /
    • 1992
  • This study was to compare the effects of dietary n-6 and n-3 fatty acids and fat unsaturation on plasma lipids and chemical composition of VLDL and LDL fraction and lipogenic enzymes activity in rat liver under the conditions providing 1) a similar amount of n-6, n-3 fatty acids(LA, ALA, EPA+DHA) in diets and 2) the various degree of fat unsaturation. Male Sprague-Dawley rats weighing 420g were treated for 6-n with six experimental diets providing 25% of energy as fat and which were different only in fatty acid composition. The fats used for a source of each fatty acid were beet tallow for saturated fatty acid corn oil for n-6 linoleic acid(LA) perilla oil for n-3 $\alpha$-linolenic acid(ALA) and fish oil n-3 eicosapentaenoic acid (EPA) and n-3 docosahexaenoic acid(DHA). Plasma cholesterol level was increased by corn oil to compare with beef tallow but was decreased by perilla oil or fish oil. Plasma TG level was significantly decreased by perilla oil or fish oil. Fish oil significantly reduced the level of HDL-Chol and the proportion of Chol in LDL fraction and that of TG in vVLDL fraction. Overall there was a singificant negative correlation between the level of each plasma lipid(Chol TG, VLDL-TG, LDL-C) and the degree of fat unsaturation. However this rerlationship is not always true when compared the hypolipidemic effect of each fatty acid at a similar level of fat unsaturation. There was a trend such taht glucose 6-P dehydrogenase 6-phosphogluconate dehydrogenase and malic enzyme activites were reduced by n-3 fatty acids. Perilla oil significantly increased the incorporation of c20:5 and c22:5 into liver tissue and fish oil suignificantly increased the incorporation of c20:5, c22:6 into liver tissue and the effect of long chain n-3 fatty acid incorporation was greater by fish oil. therefore the hypotriglyceridemic effect of n-3 fatty acid could be resulted from the interference of hepatic lipogenesis by long-chain n-3 fatty acids and the reduced proportion of TG in VLDL fraction and its effect was greater by n-3 EPA+DHA than n-3 ALA even though plasma Chol and TG levels were also influenced by the degree of dietary fat unsaturation.

  • PDF

Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes

  • Pan, Shifeng;Chen, Yongfang;Zhang, Lin;Liu, Zhuang;Xu, Xingyu;Xing, Hua
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.763-777
    • /
    • 2022
  • Objective: Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods: The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results: The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion: These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.