• Title/Summary/Keyword: lipid oxidative stability

Search Result 107, Processing Time 0.022 seconds

Effect of Hot Pepper Seed Oil, Capsaicin, and Alpha-Tocopherol on Thermal Oxidative Stability in Lard and Soy Bean Oil (고추씨유, 캡사이신 및 토코페롤의 첨가가 돈지와 대두유의 산화안정성에 미치는 영향)

  • Lee, Chi-Ho;Han, Kyu-Ho;Kim, Ah-Young;Lee, Seul-Ki;Hong, Go-Eun;Pyun, Chang-Won;Choi, Kang-Duk;Yang, Cheul-Young
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.660-666
    • /
    • 2008
  • This study was designed to compare the thermal oxidative stability of lard, soy bean oil, and hot pepper seed oil for 0-3 d at $100^{\circ}C$, and to evaluate the effect of capsaicin on thermal oxidative stability in lard and soy bean oil. As result, thermal oxidation stability was shown in the order hot pepper seed oil>soy bean oil>lard for 0-3 d at $100^{\circ}C$. In blended oils, hot pepper seed oil effectively inhibited lipid oxidation when mixed with lard than soy bean oil by showing the ratio of 30% pepper seed oil plus 70% lard and 60% pepper seed oil plus 40% soy bean oil inhibited lipid oxidation during storage periods. And to investigate the antioxidative effect of antioxidants such as capsaicin and alpha-tocopherol in hot pepper seed oil, 1,200 and 2,400 ppm capsaicin, or 0.3% alpha-tocopherol were added in soy bean oil and lard and stroed for 0-3 d at $100^{\circ}C$. Capsaicin inhibited lipid oxidation in lard but not in soy bean oil, however alpha-tocopherol exhibited a prooxidaton effect in soybean oil. Therefore, it suggests that the application of hot pepper seed oil or capsaicin in lard may be better for thermal oxidative stability.

Oxidative Stability of Soybean Oil after Frying under the Different Storage Temperature

  • Kim, Youngsung;Choi, Jinyoung;Kwon, Taeeun
    • Culinary science and hospitality research
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • The purpose of current study was to evaluate the oxidative stability of soybean oil after frying according to storage temperature. The soybean oil after 10 times deep fat frying with potato sticks (10% w/w of oil) were stored during 10 days at 30, 60 and $90^{\circ}C$ and chemical properties were determined. The acid value and peroxide value were the highest and the iodine value were the lowest when the oil stored at $90^{\circ}C$. Expecially, the production rate of peroxide was fast at over $60^{\circ}C$. According to the results, frying oil should not be stored for more than 6 days at $30^{\circ}C$ after use. Since the oil used had already produced unstable peroxides, oxidation could proceed relatively quickly even at low temperatures. Therefore, it is desirable to keep the used oil at a temperature as low as possible.

Production of Lipase-catalyzed Structured Lipid from Olive Oil with Omega-3 Polyunsaturated Fatty Acids

  • Kahveci, Derya;Can, Ash;Ozcelik, Beraat
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • Acidolysis of olive oil with omega-3 (n-3) polyunsaturated fatty acids (PUFAs) was carried out to produce a structured lipid. Novozym $435^{(R)}$ from Candida antarctica was used as the biocatalyst. Response surface methodology (RSM) was used to determine optimum conditions for lipase-catalyzed enrichment of olive oil. Three factors, 5 levels, central composite design was used. The effects of incubation time, temperature, and substrate mole ratio on incorporation ratio (n-3 fatty acids/total fatty acids, %) were investigated. From the evaluation of response surface graphs, the optimal conditions for incorporation of long chain n-3 PUFAs into olive oil were $40-60^{\circ}C$ for temperature, 30-45 hr for reaction time, and 3:1-5:1 (n-3 fatty acids/olive oil) for substrate mole ratio. Experiments conducted under optimized conditions predicted by the model equation obtained from RSM yielded structured lipids with 50.8% n-3 PUFAs. This value agreed well with that predicted by the model. Oxidative stability tests showed that the product was more susceptible to oxidation than unmodified olive oil. Antioxidant addition improved the oxidative stability of the product.

Enhanced oxidative stability of meat by including tannin-rich leaves of woody plants in goat diet

  • Garcia, Elisa Mariana;Lopez, Agustin;Zimerman, Maria;Hernandez, Olegario;Arroquy, Jose Ignacio;Nazareno, Monica Azucena
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1439-1447
    • /
    • 2019
  • Objective: The aim of this study was to evaluate the effect of dietary incorporation of tanninrich woody species on meat oxidative stability, carcass traits and meat quality in goats. Methods: Two tannin-rich species were tested using a three-treatments feeding trial, where treatments consisted of: Larrea divaricata and Acacia aroma both at 12.5% in dry matter basis of the diet and a control diet (alfalfa hay). All feeding diets were iso-protein and iso-energy. Carcass conformation, carcass compactness, carcass fatness and subcutaneous fat deposition were evaluated. Intake, liveweigh, Longissimus thoracis et lumborum muscles of goats were analyzed in order to evaluate quality parameters such as pH value, instrumental color evaluation, water holding capacity, total phenolic content, antioxidant activity, meat oxidative stability and fatty acid profiles in meat. Results: Feed intake, liveweight gain, carcass, and meat traits did not differ among treatments. Changes in meat lipid profile among treatments were observed for oleic and elaidic acid contents. Meat total phenolic content and antioxidant activity did not differ among treatments; although, meat oxidative status after storage at room temperature, as well as under refrigerated and frozen conditions were different between control and both supplemented groups. Conclusion: The inclusion of Acacia aroma and Larrea divaricata leaves in goat diet enhanced meat oxidative stability. Modulation of the ruminal biohydrogenation of fatty acids produced by condensed tannins of these plant species need to be further investigated.

Comparison of Butylated Hydroxytoluene, Ascorbic Acid, and Clove Extract as Antioxidants in Fresh Beef Patties at Refrigerated Storage

  • Zahid, Md. Ashrafuzzaman;Seo, Jin-Kyu;Parvin, Rashida;Ko, Jonghyun;Yang, Han-Sul
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.768-779
    • /
    • 2019
  • This study was performed to assess the comparison of the effects amongst butylated hydroxytoluene (BHT), clove extract (CE), and ascorbic acid (AA) as antioxidants on the oxidative stability and color values in fresh beef patties. The adding of BHT, AA, and CE to patties significantly restrained lipid oxidation, lowered hue angle as color value, and expanded redness and chroma values of fresh beef patties in comparison to the control (p<0.05). BHT and AA significantly led to impede the protein oxidation of patties by lowering carbonyl content (p<0.05). CE had no negative effect on protein oxidation. The antioxidant effects of BHT, AA, and CE were obviously manifested. Nonetheless, BHT, AA, and CE appeared to have insignificant difference of each other for lowering the protein oxidation at the end of storage. BHT and CE represented lowered lipid oxidation in comparison to AA. The antioxidant effects of BHT, AA, and CE on lipid oxidation were more marked than the effects on protein oxidation. Furthermore, CE as a natural antioxidant evinced the efficiency in oxidative stability and color stability in fresh beef patties. The study implied that CE could substitute the use of BHT and AA when making beef patties during storage.

Feeding influences the oxidative stability of poultry meat treated with ozone

  • Ianni, Andrea;Grotta, Lisa;Martino, Giuseppe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.874-880
    • /
    • 2019
  • Objective: Ozone is considered a strong antimicrobial agent with numerous potential applications in the food industry. However, its high oxidizing potential can induce alterations in foods by acting on the unsaturated fatty acids. The aim of this study was to investigate the effect of ozonation on the oxidative stability of chicken breast meat obtained from animals subjected to different feeding strategies. Methods: Samples were obtained from commercial hybrid chickens (ROSS 508), some of which were nourished with a feed enriched with fats of animal origin, while the lipid source was vegetal for the remaining birds. Samples of meat belonging to both groups were treated with ozone and then analysis was performed to evaluate alterations in physical properties, lipid content, fatty acid profile, and oxidation stability. Results: Ozone induced a significant reduction in drip loss in meat samples obtained from animals nourished with vegetable fats; this nutritional strategy also produced meats leaner and richer in polyunsaturated fatty acids. Thiobarbituric acid reactive substances, useful for the assessment of lipid oxidation, were higher in samples obtained from animals fed with vegetable fats with respect to diet based on the addition of animal fats. Conclusion: The ozone treatment improved the physical parameters of meat samples obtained from animals fed with vegetable fats, however the same samples showed a higher lipid oxidation compared to what observed in the case of the dietary intake of animal fats, probably as a consequence of the marked increase in polyunsaturated fatty acids which are more susceptible to peroxidation.

Effects of Basil and Majoram Essential Oils with or without Ascorbic Acid on Color and Oxidative and Microbial Stability of Beef Patties

  • Chung, Hai-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Fresh ground beef was mixed with ascorbic acid, basil essential oil, majoram essential oil, or each essential oil combined with ascorbic acid and stored at 1 $\pm$ 1$^{\circ}C$ for 7 days. Color, lipid oxidation (TBARS formation), aerobic bacterial counts and pH were determined. Basil and majoram essential oils were effective in inhibiting color deterioration, lipid oxidation and bacterial growth. The combined addition of basil and ascorbic acid showed the highest protection against color fading, followed by majoram + ascorbic acid, and ascorbic acid alone. Basil and majoram essential oils were most effective in delaying TBARS formation (p < ().01). Ascorbic acid did not exert an antioxidative effect and even exhibited a pro-oxidant effect. The pH values of all samples increased slightly, but no significant differences were observed, either among treatments or throughout the storage time (p > 0.05).

Lipid Oxidation and Stability of Tocopherols and Phospholipids in Soy-added Fried Products During Storage in the Dark

  • Yoon, Young-Jin;Choe, Eun-Ok
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.356-361
    • /
    • 2009
  • Lipid oxidation and contents of tocopherols and phospholipids (PL) in soy-added fried products during storage in the dark were studied. Flour dough containing soy flour at 0, 10, 20, and 30% on a weight basis was fried in corn oil at $180^{\circ}C$ for 2.5 min. The fried products were stored at $60^{\circ}C$ for 11 days in the dark. Lipid oxidation of the fried products was evaluated by conjugated dienoic acid (CDA) and p-anisidine values (PAV). Tocopherols and PL were determined by high performance liquid chromatography (HPLC). CDA contents and PAV of the fried products were increased during storage, and addition of soy flour improved lipid oxidative stability of the fried products, which was partly related to increased amount of tocopherols and PL in the soy-added fried products. Tocopherols and PL were degraded during the dark storage of the fried products. Soy flour addition to the dough did not affect the rate of tocopherols degradation during storage of the fried products; however, PL degradation was higher in the soy-added fried products. Residual amounts of $\alpha$-tocopherol and phosphatidylinositol showed high correlations with the lipid oxidation of the fried products during storage in the dark.

Physicochemical Characteristics and Oxidative Stabilities of Defatted Mealworm Powders under Different Manufacturing Conditions (제조 방법을 달리한 갈색거저리 유충 탈지 분말의 물리화학적 특성 및 저장 안정성)

  • Son, Yang-Ju;Hwang, Ja-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.2
    • /
    • pp.194-203
    • /
    • 2017
  • Mealworm, a type of edible insect, is a superior food material suitable for industrial products. In this study, four different defatted mealworm powders were prepared to determine proper manufacturing conditions. Solvent extraction method reduced lipid contents of mealworms more than pressed mealworms, and lowered lipid contents caused bright colors and good physicochemical properties for powders. In comparison, differences among milling machines used for making powders were strongly related with average size of particles. Meanwhile, the predicted shelf-life of defatted mealworm powders judged by accelerated experiments was 1 year or longer. To enhance shelf-life of mealworm powders, addition of tocopherol to mealworm powders at a concentration of 0.2% could intensify oxidative stability and microbial inhibition.

Impacts of post-mortem ageing prior to freezing on technological and oxidative properties of coarse ground lamb sausage in a model system

  • Choe, Juhui;Kim, Hyun-Wook;Farouk, Mustafa M.;Kim, Yuan H. Brad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1021-1028
    • /
    • 2017
  • Objective: The objective of this study was to evaluate the effects of ageing time of lamb loins prior to freezing on technological characteristics and oxidation stability of coarse ground lamb loin sausage using in a model system. Methods: Lamb loins (M. longissimus lumborum, n = 25) were aged at $-1.5^{\circ}C$ for 0, 1, 2, 3, and 8 wk and then frozen for the remaining days (a total of 30 wk). The aged/frozen/thawed lamb loins were ground, and model sausages were formulated with 75% aged/frozen/thawed lamb loin, 25% water, 1.5% sodium chloride (NaCl) and 0.3% sodium tripolyphosphate. The pH and thaw/purge loss of aged/frozen/thawed lamb loins were evaluated, and protein functionality (protein solubility and emulsifying capacity), water-holding capacity and textural properties of model sausages were determined. Cooked model sausages were vacuum-packaged in a plastic bag and displayed under continuous fluorescent natural white light ($3^{\circ}C{\pm}1^{\circ}C$). Colour and lipid oxidation of the cooked model sausages were evaluated on 0 and 21 d of display storage. Results: Ageing prior to freezing had no impact on pH and purge/thaw loss of lamb loins and the colour of cooked sausages (p>0.05) made from the loins. Lamb loins aged for at least 3 wk prior to freezing numerically improved total and myofibrillar protein solubilities (p>0.05) and emulsion activity index (p = 0.009) of meat batter, but decreased cooking loss (p = 0.003) and lipid oxidation (p<0.05) of model sausages. Conclusion: This study suggests that post-mortem ageing of raw meat prior to freezing could improve water-holding capacity and lipid oxidative stability of sausage made from the meat.