• Title/Summary/Keyword: lipid metabolites.

Search Result 127, Processing Time 0.034 seconds

Effects of N-Acetyl Cysteine and Silymarin on 1-Bromopropane-induced Hepatotoxicity in Mice (1-Bromopropane의 간독성에 미치는 N-Acetyl Cysteine과 Silymarin의 영향)

  • Lee, Sang-Kyu;Kang, Mi-Jeong;Jeon, Tae-Won;Jeong, Tae-Cheon
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • Recently, it was found that the formation of reactive metabolites by cytochrome P450s as well as the depletion of glutathione would play important roles in hepatotoxicity induced by 1-bromopropane. In the present study, possible roles of anti-oxidants in 1-bromopropane-induced hepatotoxicity were investigated in male ICR mice. The hepatotoxicity induced by 1-bromopropane was significantly protected by the co-treatment with either N-acetyl cysteine or silymarin. 1-Bromopropane-induced decrease in hepatic glutathione level was significantly protected by the pretreatment with N-acetyl cysteine. Taken together, the present results indicated that the reduction of hepatic glutathione level caused by 1-bromopropane treatment might be associated in 1-bromopropane-induced hepatotoxicity in mice.

Prebiotics: An overview of current researches and industrial applications (프리바이오틱스 최신 연구 현황 및 제품 개발 동향)

  • Hwang, Hye Won;Lee, Dong-Woo
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.241-260
    • /
    • 2019
  • Prebiotics are defined as substrates that are selectively utilized by host microorganisms conferring various health benefits. Current prebiotic researches not only focus on non-digestible oligosaccharides, but also extend to polyphenols and peptides. However, the extended scope of prebiotic research pertains its original purposes: promotion of beneficial bacteria in host guts and production of valuable metabolites. Maintenance of optimal gut microflora plays a key role in host health care benefits including anti-cancer activity, immune response modulation, blood lipid level reduction, increased mineral absorption, and weight loss. With increasing probiotics markets, prebiotics have also received much attention in functional food markets. Hence, many global food companies tempt to develop new prebiotics applicable for preventing human diseases as well as modulating immune system. In this review, we discuss current status of prebiotics research, market progress, and future perspectives of prebiotics.

Mass spectrometry-based approaches to explore metabolism regulating ferroptosis

  • Nguyen, Chi Thi Ngoc;Kim, Seon Min;Kang, Yun Pyo
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.413-416
    • /
    • 2022
  • Ferroptosis is a type of programmed cell death distinct from apoptosis or necroptosis. Ferroptosis is well characterized by an iron-dependent accumulation of lipid peroxides and disruption of cellular membrane integrity. Many metabolic alterations can prevent or accelerate ferroptosis induction. Recent advances in analytical techniques of mass spectrometry have allowed high-throughput analysis of metabolites known to be critical for understanding ferroptosis regulatory metabolism. In this review, we introduce mass spectrometry-based analytical methods contributing to recent discovery of various metabolic pathways regulating ferroptosis, focusing on cysteine metabolism, antioxidant metabolism, and poly-unsaturated fatty acid metabolism.

Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation

  • Choi, Eun Jung;Jeon, Chang Hyun;Park, Dong Ho;Kwon, Tae-Hwan
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.964-973
    • /
    • 2020
  • Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the proinflammatory status of immune cells. Thiamine, a wellknown co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.

Potential involvement of Drosophila flightless-1 in carbohydrate metabolism

  • Park, Jung-Eun;Jang, Jinho;Lee, Eun Ji;Kim, Su Jung;Yoo, Hyun Ju;Lee, Semin;Kang, Min-Ji
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.462-467
    • /
    • 2018
  • A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.

The Effect of Indomethacin on the Production of Eicosanoids and Edema during Ischemia-Reperfusion Injury in Skeletal Muscle

  • Chung, Yoon-Jae;Sohn, Byung-Kyu;Hyun, Kwang-Soon;Yoo, Sang-Hee;Ryu, Hyong-Kyun;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • During reperfusion of skeletal muscle after ischemia, lipid mediators, mainly eicosanoids, are released and may have a role in the pathogenesis of reperfusion injury. To validate the role of eicosanoids in the ischemia-reperfusion induced functional deficits in skeletal muscle, we compared muscle edema and the changes of eicosanoid concentration in the rat hind limb after ischemia-reperfusion injury by application of tourniquet. After 4 hours of ischemia, reperfusion was established for 4 hours by releasing tourniquet. To assess tissue damage, edema, and wet/dry weight ratios were determined and the eicosanoid concnentrations were measured by the HPLC. The muscle edema and the release of cyclooxygenase metabolites were not induced by the ischemia itself rather they were significantly increased by reperfusion. Indomethacin treatment ameliorated limb edema and decreased the release of $6-keto-PGF_{1{\alpha}},$ thromboxane $B_2,$ and $PGE_2$ inducedby reperfusion. But the inhibitory effect of indomethacin on edema (35%) was relatively low than the inhibitory effect on release of cyclooxygenase metabolites (up to 69%) by reperfusion. These results support the view that cyclooxygenase products may play a significant role in the formation of muscle injury by ischemia-reperfusion and suggest that nonsteroidal antiinflammatory agents might be partially beneficial to the management of acute limb ischemia-reperfusion injury.

  • PDF

Metabolomics Approach to Explore the Effects of Rebamipide on Inflammatory Arthritis Using Ultra Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

  • Moon, Su-Jin;Lee, Soo Hyun;Jung, Byung-Hwa;Min, Jun-Ki
    • Journal of Rheumatic Diseases
    • /
    • v.24 no.4
    • /
    • pp.192-202
    • /
    • 2017
  • Objective. Rebampide is a gastroprotective agent used to treat gastritis. It possesses anti-inflammatory and anti-arthritis effects, but the mechanisms of these effects are not well understood. The objective of this study was to explore mechanisms underlying the therapeutic effects of rebamipide in inflammatory arthritis. Methods. Collagen-induced arthritis (CIA) was induced in DBA/1J mice. DBA/1J mice were immunized with chicken type II collagen, then treated intraperitoneally with rebamipide (10 mg/kg or 30 mg/kg) or vehicle (10% carboxymethylcellulose solution) alone. Seven weeks later, plasma samples were collected. Plasma metabolic profiles were analyzed using ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry-based metabolomics study and metabolite biomarkers were identified through multivariate data analysis. Results. Low dose rebamipide treatment reduced the clinical arthritis score compared with vehicle treatment, whereas high dose rebamipide in CIA aggravated arthritis severity. Based on multivariate analysis, 17 metabolites were identified. The plasma levels of metabolites associated with fatty acids and phospholipid metabolism were significantly lower with rebamipide treatment than with vehicle. The levels of $15-deoxy-^{{\Delta}12,14}$ prostaglandin J2 and thromboxane B3 decreased only in high dose-treated groups. Certain peptide molecules, including enterostatin (VPDPR) enterostatin and bradykinin dramatically increased in rebamipide-treated groups at both doses. Additionally, corticosterone increased in the low dose-treated group and decreased in the high dose-treated group. Conclusion. Metabolomics analysis revealed the anti-inflammatory effects of rebamipide and suggested the potential of the drug repositioning in metabolism- and lipid-associated diseases.

Glutamine Inhibits TNF-α-induced Cytosolic Phospholipase A2 Activation via Upregulation of MAPK Phosphatase-1

  • Yoon, So Young;Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.223-230
    • /
    • 2021
  • Tumor necrosis factor alpha (TNF-α) is a principal regulator of inflammation and immunity. The proinflammatory properties of TNF-α can be attributed to its ability to activate the enzyme cytosolic phospholipase A2 (cPLA2), which generates potent inflammatory lipid mediators, eicosanoids. L-glutamine (Gln) plays physiologically important roles in various metabolic processes. We have reported that Gln has a potent anti-inflammatory activity via rapid upregulation of mitogen-activated protein kinases (MAPKs) phosphatase (MKP)-1, which preferentially dephosphorylates the key proinflammatory enzymes, p38 MAPK and cytosolic phospholipase A2 (cPLA2). In this study, we have investigated whether Gln could inhibit TNF-α-induced cPLA2 activation. Gln inhibited TNF-α-induced increases in cPLA2 phosphorylation in the lungs and blood levels of the cPLA2 metabolites, leukotrine B4 (LTB4) (lipoxygenase metabolite) and prostaglandin E2 (PGE2) (cyclooxygenase metabolite). TNF-α increased p38 and cPLA2 phosphorylation and blood levels of LTB4 and PGE2, which were blocked by the p38 inhibitor SB202190. Gln inhibited TNF-α-induced p38 and cPLA2 phosphorylation and production of the cPLA2 metabolites. Such inhibitory activity of Gln was no longer observed in MKP-1 small interfering RNA-pretreated animals. Our data indicate that Gln inhibited TNF-α-induced cPLA2 phosphorylation through MKP-1 induction/p38 inhibition, and suggest that the utility of Gln in inflammatory diseases in which TNF-α plays a major role in their pathogenesis.

Growth performance and, blood metabolites and leukocytes of growing pigs fed with fermented hulless barley (발효 쌀보리의 급여가 육성돈의 혈중 대사산물, 혈구조성 및 생산성에 미치는 영향)

  • Jeong, Yong Dae;Kim, Ki Hyun;Min, Ye Jin;Kim, Young Hwa;Yu, Dong Jo;Cho, Kyu Ho;Kim, Doo Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.295-302
    • /
    • 2018
  • This study was conducted to investigate effect of feeding fermented hulless barley (FHB) on growth performance and blood metabolites in growing pigs. Forty-five pigs (LYD; initial body weight, $30.33{\pm}0.05kg$) were randomly allotted into three dietary treatments that consisted of 0, 0.5 and 1.0% of the FHB in the basal diets. The pigs fed 0.5% FHB showed higher average daily gain than the 0 and 1% FHB treatments, although there was not significant among the treatments. Similarly, average daily feed intake and feed conversion ratio were not different among the treatments. Blood white blood cells, neutrophil, lymphocyte, monocyte, eosinophil and basophil were ranged to reference values, but not difference among the treatments. Serum glucose was increased in the control compared with 0.5 and 1.0% FHB. However, parameters related to protein, lipid and mineral also were not different among the treatments. These results indicate the FHB has no significant effect of growth performance and metabolizable responses in growing-finishing pigs.