• 제목/요약/키워드: lipid biomarkers

Search Result 87, Processing Time 0.691 seconds

Anti-tumor Initiating Potential of Andrographolide in 7,12-dimethylbenz[a]anthracene Induced Hamster Buccal Pouch Carcinogenesis

  • Manoharan, S.;Singh, Arjun Kumar;Suresh, K.;Vasudevan, K.;Subhasini, R.;Baskaran, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5701-5708
    • /
    • 2012
  • The aim of the study was to investigate the chemopreventive potential of andrographolide in 7,12-dimethylbenz(a) anthracene (DMBA)-induced hamster buccal pouch carcinogenesis. Oral tumors developed in the buccal pouch of golden Syrian hamsters at a 100% incidence on painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. Marked abnormalities in the status of detoxification enzymes, lipid perxodiation and antioxidants were noticed in hamsters treated with DMBA alone. Oral administration of andrographolide at a dose of 50 mg/kg bw to hamsters treated with DMBA not only completely prevented the tumor formation but also restored the status of the above mentioned biomarkers. The present study thus demonstrates the chemopreventive potential of andrographolide in DMBA-induced hamster buccal pouch carcinogenesis, which is probably due to its antioxidant potential as well as modulating effect on xenobiotic metabolising enzymes during DMBA-induced oral carcinogenesis.

Identification of Marker Genes Related to Cardiovascular Toxicity of Doxorubicin and Daunorubicin in Human Umbilical Vein Endothelial Cells (HUVECs)

  • Kim, Youn-Jung;Lee, Ha-Eun;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.246-253
    • /
    • 2007
  • Doxorubicin and daunorubicin are excellent chemotherapeutic agents utilized for several types of cancer but the irreversible cardiac damage is the major limitation for its use. The biochemical mechanisms of doxorubicin- and daunorubicin- induced cardiotoxicity remain unclear. There are many reports on toxicity of doxorubicin and doxorubicin in cardiomyocytes, but effects in cardiovascular system by these drugs are almost not reported. In this study, we investigated gene expression profiles in human umbilical vein endothelial cells (HUVECs) to better understand the causes of doxorubicin and doxorubicininduced cardiovascular toxicity and to identify differentially expressed genes (DEGs). Through the clustering analysis of gene expression profiles, we identified 124 up-regulated common genes and 298 down-regulated common genes changed by more than 1.5-fold by all two cardiac toxicants. HUVECs responded to doxorubicin and doxorubicin damage by increasing levels of apoptosis, oxidative stress, EGF and lipid metabolism related genes. By clustering analysis, we identified some genes as potential markers on apoptosis effects of doxorubicin and doxorubicin. Six genes of these, BBC3, APLP1, FAS, TP53INP, BIRC5 and DAPK were the most significantly affected by doxorubicin and doxorubicin. Thus, this study suggests that these differentially expressed genes may play an important role in the cardiovascular toxic effects and have significant potential as novel biomarkers to doxorubicin and doxorubicin exposure.

The emerging role of lncRNAs in inflammatory bowel disease

  • Yarani, Reza;Mirza, Aashiq H.;Kaur, Simranjeet;Pociot, Flemming
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.7.1-7.14
    • /
    • 2018
  • Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell-cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells. In this review, we aim to summarize the current knowledge regarding the role of lncRNAs in IBD and highlight potential avenues for future investigation. We also collate potentially immune-relevant, IBD-associated lncRNAs identified through a built-by association analysis with respect to their neighboring protein-coding genes within IBD-susceptible loci. We further underscore their importance by highlighting their enrichment for various aspects of immune system regulation, including antigen processing/presentation, immune cell proliferation and differentiation, and chronic inflammatory responses. Finally, we summarize the potential of lncRNAs as diagnostic biomarkers in IBD.

Perspectives on Bovine Milk-Derived Extracellular Vesicles for Therapeutic Applications in Gut Health

  • Mun, Daye;Oh, Sangnam;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.197-209
    • /
    • 2022
  • Extracellular vesicles (EVs) are nanosized vesicles secreted from cells into the extracellular environment and are composed of a lipid bilayer that contains cargos with biological activity, such as lipids, proteins, mRNAs, and noncoding microRNAs (miRNAs). Due to their biological activity and their role in cell-to-cell communication, interest in EVs is rapidly increasing. Bovine milk is a food consumed by people of all ages around the world that contains not only a significant amount of nutrients but also EVs. Milk-derived EVs also exhibit biological activity similar to other source-derived EVs, and studies on bovine milk EVs have been conducted in various research fields regarding sufficient milk production. In particular, not only are the effects of milk EVs themselves being studied, but the possibility of using them as drug carriers or biomarkers is also being studied. In this review, the characteristics and cargo of milk EVs are summarized, as well as their uptake and stability, efficacy and biological effects as carriers, and future research directions are presented.

Volatile Compounds for Discrimination between Beef, Pork, and Their Admixture Using Solid-Phase-Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) and Chemometrics Analysis

  • Zubayed Ahamed;Jin-Kyu Seo;Jeong-Uk Eom;Han-Sul Yang
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.934-950
    • /
    • 2024
  • This study addresses the prevalent issue of meat species authentication and adulteration through a chemometrics-based approach, crucial for upholding public health and ensuring a fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-phase-microextraction-gas chromatography-mass spectrometry. Adulterated meat samples were effectively identified through principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection scores and a Random Forest test, 11 key compounds, including nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat.

Analysis of Pine Nut Oil Composition and Its Effects on Obesity (잣기름 성분분석 및 비만 예방효과 연구)

  • Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Kim, Tae Woo;Choe, Myeon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.630-635
    • /
    • 2014
  • Pine nut oil (PNO) is well known to impart beneficial effects in overweight individuals, but the mechanisms underlying PNO-mediated weight loss remain unclear. To investigate how PNO promotes weight loss, its composition was determined by gas chromatography coupled with mass spectrometry (GC-MS). In addition, the effects of PNO on cytotoxicity, lipid accumulation, expression of lipid metabolism-related biomarkers, and leptin secretion were assessed in 3T3-L1 cells. GC-MS analyses revealed that PNO contains several components, including linoleic acid, oleic acid, palmitic acid, and stearic acid. Moreover, PNO did not have a cytotoxic effect on 3T3-L1 cells. However, it inhibited the expression of peroxisome proliferator-activated receptor (PPAR) and adipocyte protein 2 (aP2). Finally, PNO significantly increased leptin secretion in a dose-dependent manner. Taken together, these results support the notion that PNO is useful for weight management in overweight individuals.

The Effects of Levan on Blood Lipids and the Absorption of Calcium in Rats Fed a Low Calcium Diet (레반의 혈장지질 감소와 칼슘흡수율 증가 효과)

  • No, Jung-Ran;Park, Sun-Young;Kim, Mi-Kyoung;Jo, Han-Young;Lee, In-Young;Ly, Sun-Yung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • Levan, the fructose polymer is an indigestible carbohydrate regularly consumed by humans. Its physiological functions, in terms of hypocholesterolemic effect and calcium metabolism, have not been well documented. The objective of this study was to investigate the effects of levan on blood lipids and the calcium absorption ratio in rats fed a 0.1% low calcium diet. Thirty rats were divided into three groups and fed a 0.1% low calcium diet (control) or low calcium diets containing either 2.5% levan or 5% levan for eight weeks. The blood lipid and biomarkers relevant to Ca metabolism (urinary Ca and hydroxyproline), the femoral weight and the Ca contents were determined. The body weight gains were lower in the 5% levan group than the control group. Plasma concentrations of triacylglycerol and LDL-cholesterol decreased in the 5% levan group, compared to the control group, but the atherogenic indice were not affected. Blood alkaline phosphatase activity, Ca and urinary hydroxyproline excretion levels were not different in the three groups. The net calcium absorption in rats fed a 5% levan diet was greater than rats fed the control diet, while the femoral weights and Ca contents were not significantly different in the three groups. We concluded that a 5% levan diet could both enhance the calcium absorption and improve the lipid profiles in rats fed a low calcium diet.

Antioxidant and Anti-Obesity Effect of SM17 in High-Fat Diet Induced C57BL/6 Mice (고지방식이로 비만을 유도한 C57BL/6 마우스에서 SM17의 항산화 및 항비만 효과)

  • Kim, Soo Hyun;Kim, Su Ji;Kim, Kyeong Jo;Lee, Ah Reum;Roh, Seong-Soo;Lee, Young Cheol
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.47-55
    • /
    • 2017
  • Objectives : Obesity is caused by the excess accumulation of fat in the body due to energy imbalance, and it causes various diseases. The aim of this study was to investigate an anti-obesity efficacy and an antioxidant activity of water from herbal mixture extract (SM17). Methods : The antioxidant activities were evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals. To evaluated anti-obesity effect of SM17, we used a high fat diet fed mouse model. The SM17 (150 mg/kg body weight/day, p.o.) was treated every day for 6 weeks to C57BL/6 mice. Body weight and food intake were measured every day. The changes of reactive oxygen species (ROS), alanine aminotransferanse (ALT), aspartate aminotransferase (AST), triglycerids (TG) and total cholesterol (TC) in serum were analyzed after experiment. Also, expression of lipid metabolism related proteins were investigated by western blot analysis. Results : It was effective in antioxidant measurements, SM17 administration inhibited the biomarkers of lipid metaboism in serum and tissues. The administration of SM17 showed a significant reduction of body and tissue weight. Morever, it decreased ROS, ALT, AST, TG and TC in serum, compared with those of the obese mice. Adipogenesis-related protein expressions increased in obese mice compared to normal mice. However, SM17 group exhibited the down-expression of these proteins. Conclusion : A SM17 aqueous extract has a great effect on the stimulation (AMPK) activation, and may have a benefit to reduce a fatty acid metabolism through inhibition of lipid accumulation.

Influence of metabolizable energy on blood biomarkers in duck under heat stress (대사에너지가 열 스트레스에 노출된 오리의 혈액 생체지표에 미치는 영향)

  • Sim, J.B.;Choi, D.H.;Kim, C.R.;Park, B.S.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.132-141
    • /
    • 2017
  • The objective of this study was to determine the influence of dietary metabolic energy (ME) on blood parameters in duck under heat stress. A total of 240 meat ducks Cherry valley (Anas platyrhynchos) were assigned into four treatment groups with a randomized block design for 42 days. The four treatments were: ME 2900 kcal/kg, ME 3000 kcal/kg, ME 3100 kcal/kg, and ME 3200 kcal/kg. Blood lipid profiles was higher in ME 2900 but lower in ME 3100 and ME 3200 than that of ME 3000 (p < 0.05). Blood aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were higher in ME 3100 and ME 3200 compared those in ME 3000 (p < 0.05). The blood red cell and platelet profiles were increased in ME 3100 and ME 3200, but reduced in ME 2900 compared to those in ME 3000 (p < 0.05). Among blood electrolytes, chloride ($Cl^-$) concentration was decreased in ME 2900 compared to that in ME 3000. Blood gas $PCO_2$ was reduced in ME 2900 compared to that in ME 3000 (p < 0.05). Blood immunoglobulin (IgG) level was reduced in ME 2900 compared to that in ME 3000 (p < 0.05). Level of stress hormone, corticosterone was increased in ME 2900, but decreased in ME 3100 and ME 3200 compared to that in ME 3000 (p < 0.05).

The Anti-obesity Effects of Bangpungtongseong-san and Daesiho-tang: A Study Protocol of Randomized, Double-blinded Clinical Trial (방풍통성산 및 대시호탕의 항비만효과 분석: 단일기관 무작위배정 이중맹검 임상시험 프로토콜)

  • Oh, Jihong;Shim, Hyeyoon;Cha, Jiyun;Kim, Ho Seok;Kim, Min Ji;Ahn, Eun Kyung;Lee, Myeong-Jong;Lee, Jun-Hwan;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • Objectives: The aim of this study is to evaluate the effects of Bangpungtongseong-san (Fangfengtongsheng-san, BTS) and Daesiho-tang (Dachaihu-tang, DST) on weight loss and improvement in lipid metabolism and glucose metabolism. Furthermore, we intend to develop a prediction model for drug effects through the analysis of the single nucleotide polymorphism (SNP), gut-microbiota, and the expression of immune-related biomarkers. Methods: This study is a single-center, randomized, double-blind, parallel-design clinical trial. One hundred twenty-eight participants will be assigned to the BTS group (n=64) and DST group (n=64). Both groups will be administered 4 g medication three times a day for up to 2 weeks. The primary outcomes is weight loss. The secondary outcomes include bioelectrical impedance analysis, waist circumstance, body mass index, total cholesterol, high-density lipoprotein, triglyceride, insulin resistance. The exploratory outcomes include 3-day dietary recall, food frequency questionnaire, quality of life questionnaire, gut microbiota analysis, immune biomarkers analysis, and SNP analysis. Assessment will be made at baseline and at week 4, 8, and 12. Conclusions: This protocol will be implemented by approval of the Institutional Review Board of Dongguk University. The results of this trial will provide a systematic evidence for the treatment of obesity and enable more precise herbal medicine prescriptions.