• Title/Summary/Keyword: lipase-catalyzed interesterification

Search Result 23, Processing Time 0.027 seconds

Characterization of Low-Trans Solid Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Interesterification Reaction (효소적 에스테르 교환 반응 시 카놀라유와 대두극도경화유의 비율에 따른 저트랜스 고체지방의 특성)

  • Kim, Young-Joo;Lyu, Hyun-Kyeong;Lee, Seon-Mo;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1320-1327
    • /
    • 2010
  • Lipase-catalyzed interesterification of canola (CO) and fully hydrogenated soybean oil (FHSBO) at different weight ratios (70:30, 75:25, and 80:20) was performed in a batch type reactor to produce low-trans solid fats. Each reaction was conducted in the shaking water bath for various reaction times (1, 3, 6, 18 and 24 hr) at 70oC and 220 rpm using Lipozyme TLIM (20 wt% of total substrate) from Thermomyces lanuginosus. After 24 hr reaction, solid fat content (SFC) by differential scanning calorimetry (DSC), fatty acid and triacylglycerol (TAG) composition of low-trans solid fats were determined. SFC of the products was reduced when the content of canola oil in the reaction mixture was increased. Major fatty acids were stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). Trans fatty acid content in the low-trans solid fats showed less than 0.3 wt%. In the HPLC analysis, major TAG species showed LOO (linoleyl-oleoyl-oleoyl), OOO, POO/SOL, SOO, and SOS.

Development and Characterization of Trans Free Margarine Stock from Lipase-Catalyzed Interesterification of Avocado and Palm Oils (팜유와 아보카도유로부터 효소적 interesterification을 통한 trans free margarine stock 제조 및 이화학적 특성 연구)

  • Lee, Yun-Jeung;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.231-237
    • /
    • 2009
  • Trans free margarine stock (TFMS) was produced by lipase-catalyzed synthesis of fully hydrogenated soybean oil (FHSBO), avocado oil (AO) and palm oil (PO). A blend of FHSBO, AO, and PO with a 1:5:4 (30:150:120 g, respectively) ratio was interesterified with lipozyme RM IM(from Rhizomucor miehei) in a 1 L-batch type reactor at 65 for 12 hr, and the physicochemical and melting properties of TFMS were compared with commercial margarine. The solid fat content (%) of the TFMS was analyzed at 25, 30, and $35^{\circ}C$, respectively, while its melting point was $37.8^{\circ}C$. The trans fatty acid content of the TFMS was below 0.1%. It also had acid, saponification, and iodine values of 0.4, 173.9, and 58.6, respectively. In HPLC chromatograms of the TFMS, newly synthesized peaks of triacylglycerol molecules were observed by using reverse-phase HPLC with evaporative light-scattering detection. Normal-phase HPLC with UV detection was used to quantify tocopherols in the TFMS, indicating that its ${\alpha}-$, ${\gamma}-$ and ${\delta}$-tocopherol contents were 5.7, 2.1, and 1.7 mg/100 g, respectively.

Optimization of Lipase-Catalyzed Interesterification for Production of Human Milk Fat Substitutes by Response Surface Methodology (반응표면분석에 의한 모유대체지의 효소적 합성조건 최적화)

  • Son, Jeoung-Mae;Lee, Jeung-Hee;Xue, Cheng-Lian;Hong, Soon-Taek;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.689-695
    • /
    • 2011
  • 1,3-Dioleoyl-2-palmitoylglycerol (OPO)-rich human milk fat substitute (HMFS) was synthesized from tripalmitin (PPP)-rich fraction and oleic ethyl ester by a lipase-catalyzed interesterification. Response surface methodology (RSM) was employed to optimize the presence of palmitic acid at sn-2 position ($Y_1$, %) and of oleic acid at sn-1,3 ($Y_2$, %), with the reaction factors as substrate molar ratio of PPP-rich fraction to oleic ethyl ester ($X_1$, 1:4, 1:5 and 1:6), reaction temperature ($X_2$, 50, 55 and $60^{\circ}C$), and time ($X_3$, 3, 7.5 and 12 h). The optimal conditions for HMFS synthesis were predicted at the reaction combination of $55^{\circ}C$, 3 h and 1:6 substrate ratio. HMFS re-synthesized under the same conditions displayed 70.70% palmitic acid at the sn-2 position and 69.58% oleic acid at the sn-1,3 position. Reaction product was predominantly (90.35%) triacylglycerol (TAG) was observed in which the major TAG species, OPO, comprised 31.24%.

Optimization of Interesterification Reaction for the Continuous Production of trans-Free Fat in a Packed Bed Enzyme Bioreactor with Immobilized Lipase (고정화 리파제를 이용한 충진형 효소생물반응기 내에서의 무-트랜스 유지 연속 생산을 위한 에스테르 교환 반응의 최적화)

  • Kim, Sang-Woo;Park, Kyung-Min;Ha, Jae-Uk;Lee, Jae-Hwan;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2009
  • Epidemiological studies showed that high trans-fat consumption is closely associated with getting the risks of cardiovascular disease. The objective of this study was to produce trans-free fat through lipase-catalyzed interesterification, as a substitute for the cream margarine commonly used in industry. Optimum conditions for interesterification in a packed bed enzyme bioreactor (PBEB) were determined using response surface methodology (RSM) based on central composite design. Three kinds of reaction variables were chosen, such as substrate flow rate (0.4-1.2 mL/min), reaction temperature (60-70$^{\circ}C$), and ratio of fully hydrogenated canola oil (FHCO, 35-45%) to evaluate their effects on the degree of interesterification. Optimum conditions from the standpoint of solid fat content (SFC) were found to be as follows: 0.4 mL/min flow rate, 64.7$^{\circ}C$ reaction temperate, and 42.8% (w/w) ratio of FHCO, respectively. The half-life of immobilized lipase in PBEB with two stages at 60$^{\circ}C$ ($1^{st}$ stage) and 55$^{\circ}C$ ($2^{nd}$ stage) was about more than 30 days as estimated by extrapolating the incubation time course of tristearoyl glycerol (TS) conversion, whereas the half-life of the enzyme in PBEB with single stage at 65$^{\circ}C$ was only about 15 days. Finally, the results from SFC analysis suggest that trans-free fat produced in this study seems to be a suitable substitute for the cream margarine commonly used in industry.

Enzymatic synthesis of asymmetric structured lipids containing 1,2-disaturated-3-unsaturated glycerol using acyl migration (효소적 Acyl migration을 이용한 비대칭형 재구성지질(1,2-disaturated-3-unsaturated glycerol)의 합성 및 분석)

  • Hyeon, Jin-Woo;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • The enzymatic interesterification was performed to produce structured lipids (SLs) with palm mid fraction (PMF) and stearic ethyl ester (STEE) for 1, 3, 6, 9, 12 and 15 hr at $80^{\circ}C$. The reaction was catalyzed by Lipozyme TLIM (immobilized lipase from Thermomyces lanuginosus, amount of 20% by weight of total substrates) in a shaking water bath set at 180 rpm. The optimum condition for synthesis of asymmetric SLs were: substrate molar ratio 1:0.5 (PMF:STEE, by weight), reaction time 6 hr, enzyme 20% (wt%, water activity=0.085) of total substrate and reaction temperature $80^{\circ}C$. After reaction at optimized condition, triacylglycerols (symmetrical and asymmetrical TAGs) from reactants were isolated. POP/PPO (1,3-palmitoyl-2-oleoyl glycerol or 1,2-palmitoyl-3-oleoyl glycerol), POS/PSO (palmitoyl-oleoyl-stearoyl glycerol or palmitoyl-stearoyl-oleoyl glycerol), SOS/SSO (1,3-stearoyl-2-oleoyl glycerol or 1,2-stearoyl-3-oleoyl glycerol) were obtained by solvent fractionation. Finally, refined SLs contained stearic acid of 16.91%. Solid fat index and thermogram of the refined SLs were obtained using differential scanning calorimetry. The degree of asymmetric triacylglycerol in the refined SLs was analyzed by Ag-HPLC equipped with evaporated light scattering detector (ELSD). The refined SLs consisted of symmetric TAG of 41.15 area% and asymmetric TAG of 58.85 area%.

Optimization of Enzymatic Synthesis Condition of Structured Lipids by Response Surface Methodology (반응표면분석에 의한 기능성 유지의 효소적 합성 조건 최적화)

  • Cho, Eun-Jin;Lee, Jong-Ho;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.531-536
    • /
    • 2004
  • Synthesis conditions were optimized using response surface methodology for producing structured lipids (SL) by interesterification of DHA-enriched algae oil derived from microalgae, Schizochytrium sp. and corn oil. Reaction was performed fer 24 hr at $55^{\circ}C$ catalyzed by immobilized lipase from Rhizomucor miehei (RM IM) in shaking water bath. Major fatty acids of SL were palmitic (21.70 mol%), oleic (20.20 mol%), and linoleic (27.34 mol%) acids, and DHA (15.06 mol%). To separate newly synthesized SL-triglycerides (TG) species, HPLC with evaporative light scatting detector (ELSD) was used. Production conditions were optimized using central composite design with reaction temperature $(35-75^{\circ}C,\;X_1)$, reaction time $(2-42\;hr,\;X_2)$, and enzyme concentration $(2-14%,\;X_3)$ as variables. When variables were $70.28^{\circ}C\;(X_1),\;28.74\;hr\;(X_2),\;and\;11.30%\;(X_3)$, maximum content of selected three peaks of synthesized SL-TG species was predicted as 6.97 area%.

Analysis and Enzymatic Production of Structured Lipids Containing DHA Using a Stirred-Batch Type Reactor (회분식 반응기를 이용한 DHA 함유 재구성지질의 효소적 합성 및 이화학적 특성 분석)

  • Kim, Nam-Sook;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1052-1058
    • /
    • 2005
  • Structured lipid (SL) was synthesized by enzymatic interesterification with algae oil containing docosahexaenoic acid (DHA) and soybean oil in the stirred-batch type reactor. The reaction was performed for 15hr at $65^{\circ}C$ with 300 rpm catalyzed by sn-1,3 specific Lipozyme RM 1M lipase from Rhizomucor miehei ($11\%$ by weight of total substrates) in the absent organic solvent. SL contained $87.1\;area\%$ triacylglycerol (TAG), $12.1\;area\%$ diacylglycerol (DAG), $0.6\;area\%$ monoacylglycerol (MAG), and $0.2\;area\%$ free fatty acid (FFA). Major fatty acid profiles of SL were DHA $(15.7\;mol\%)$, linoleic $(31.1\;mol\%)$, palmitic $(20.2\;mol\%)$, oleic $(13.5\;mol\%)$ and eicosapentaenoic acid $(EPA,\;6.6 mol\%)$. SL contained the newly synthesized several peaks. Iodine and saponification of SL were 206.7 and 183.8. SL color showed darker and redder than soybean oil, and appeared the most yellowish color among SL, soybean, and algae oil.

Optimization of Lipase-Catalyzed Production of Structured Lipids from Canola Oil Containing Similar Composition of Triacylglycerols to Cocoa Butter (Canola Oil로부터 코코아버터와 유사한 Triacylglycerol 조성을 가진 재구성지질의 효소적 합성 최적화 연구)

  • Moon, Jun-Hee;Lee, Jeung-Hee;Shin, Jung-Ah;Hong, Soon-Taek;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1430-1437
    • /
    • 2011
  • Synthesis conditions of cocoa butter equivalents were optimized using the response surface method (RSM) by interesterification of canola oil (Ca), palmitic ethyl ester (PEE), and stearic ethyl ester (StEE). The reaction was catalyzed by immobilized lipase (Lipozyme TLIM) from Thermomyces lanuginosa to produce structured lipids containing a composition of triacylglycerols similar to cocoa butter. Reaction conditions were optimized using D-optimal design with the three reaction factors of the substrate molar ratio of canola oil to palmitic ethyl ester and stearic ethyl ester (Ca : PEE : StEE=1:1:3, 1:1.66:5, 1:2:6, 1:2.33:7, 1:3:9, $X_1$), enzyme ratio (2~6%, $X_2$), and reaction time (30~270 min, $X_3$). The optimal conditions that minimized acyl-migration while maximizing 1-palmitoyl-2-oleoyl-3-stearoyl glycerol (POS), 1,3-distearoyl-2-oleoyl glycerol (SOS), and 1,3-dipalmitoyl-2-oleoyl glycerol (POP) were predicted, resulting in Ca : PEE : StEE=1:3:9, 6% of enzyme ratio, and 40 min of reaction time. The reaction product of structured lipids was synthesized again under the same conditions, showing 10.43 area% of acyl-migration, 25.31 area% of POS/PSO, 19.79 area% of SOS, and 11.22 area% of POP.

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.

Development and Physical Properties of Low-Trans Spread Fat from Canola and Fully Hydrogenated Soybean Oil by Lipase-Catalyzed Synthesis (카놀라유와 대두극도경화유로부터 효소적으로 합성된 저트랜스 스프레드 고체지의 특성)

  • Kim, Young-Joo;Lyu, Hyun-Kyeong;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1328-1334
    • /
    • 2010
  • Low-trans spread fat (LTSF) was produced by lipase-catalyzed synthesis of canola (CO) and fully hydrogenated soybean oil (FHSBO) at 65:35 (w/w). Blend of CO and FHSBO with 65:35 ratio was interesterified using Lipozyme TLIM (immobilized Thermomyces lanuginosus, 20% of total substrate) in a 1 L-batch type reactor at $70^{\circ}C$ with 500 rpm for 24 hr. Then, physicochemical melting properties of LTSF were compared with commercial spread fat. At $20^{\circ}C$, solid fat contents (SFC) of commercial spread fat as a control and LTSF were similar, showing 19.1 and 18.1%, respectively. Major compositional fatty acids of LTSF were C18:0, C18:1 and C18:2 (29.2, 41.8 and 13.3 wt%, respectively). Trans fatty acid content of the LTSF (0.2 wt%) was lower than that of commercial spread fat (5.5 wt%). In the RP-HPLC analysis from LTSF, major triacylglycerol (TAG) molecules were SOL (stearoyl-oleoyl-linoleyl), SOO, POS/PSP, and SOS. Also, polymorphic form and x-ray diffraction of LTSF showed coexistence of $\beta$' and $\beta$ form crystals.