• Title/Summary/Keyword: lipase activity

Search Result 596, Processing Time 0.019 seconds

Optimization of Lipase Pretreatment Prior to Lipase Immobilization to Prevent Loss of Activity

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kim, Seung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.650-654
    • /
    • 2007
  • In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated. Immobilized lipase pretreated with 0.1% of soybean oil had better activity than those pretreated with other materials. The optimal temperature, agitation speed, and pretreating time for lipase pretreatment were determined to be $40^{\circ}C$, 200rpm, and 45min, respectively. The activity of immobilized soybean oil pretreated lipase was 630U/g matrix, which is 20 times higher than that of immobilized non-pretreated lipase. In addition, immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.

The Release of Hepatic triglyceride Lipase from Rat Monolayered Hepatocytes in Primary Culture (일차배양 쥐간세포로부터 간트리글리세리드 Lipase의 유리)

  • ;Yam
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.1
    • /
    • pp.40-45
    • /
    • 1991
  • The release of hepatic triglyceride lipase from cultured rat hepatocytes and its hormonal regulation were studied. The activity of lipase released into the medium in the presence of heparin was increasing during 24 hours on the 2nd of culture while this was 10% in the absence of heparin as compared with the lipase activity in the presense of heparin. When hepatocytes were cultured with anti-hepatic triglyceride lipase lgG the lipase activity was supp-ressed by 92% The results suggest that the enzyme relaeased into culture medium is identical to hepatic triglyceride lipase which can be released only in the presence of heparin the model of release being similar to that of lipoprotein lipase from adipocytes. The addition of monensin to the medium resulted in The inhibition of lipase secretion by 61% Insulin enhanced lipase activity only 20% whereas dexamethasone suppressed the activity by 44% These data inidica-ted that hepatic triglyceride lipase is secreted and released from hepatocytes in the presence of heparin and its secretion is regulated by hormones.

  • PDF

Staphylococcus haemolyticus Lipase; High-Level Expression in Escherichia coli and Activation of Nonionic Detergent

  • Oh, Byung-Chul;Kim, Hyung-Kwoun;Kim, Myung-Hee;Lee, Jung-Kee;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.656-662
    • /
    • 2000
  • A high level of Staphylococcus haemolyticus L62 lipase was expressed in an Escherichia coli transformant. The expressed lipase activity in the cell-free extract was 70,800 U/l, which corresponded to 30% of the total cellular protein. Pre-mixing of the l62 lipase with some nonionic detergents enhanced its hydrolytic activity towards olive oil: Tween detergents activated the L62 lipase by 3 fold. Gel filtration chromatography of the Tween-80-L62 lipase mixture demonstrated a polymerized complex (∼180 kDa) formed exclusively between Tween-80 and the L62 lipase. The lipase enzyme in the complex showed a higher specific activity towards most triacylglycerols than the intact L62 lipase. The activity enhancement towards each substrate was quite different depending on the acyl chain length; the activity towards tributyrin, trilinolein, and trilinolenin was much more enhanced than the towards the medium and the long-chain saturated triglycerides.

  • PDF

Effects of pH on the Activity of Lipase Isolated from Milk Fat Globules (유지방구로부터 분리한 Lipase의 활성에 미치는 pH의 영향)

  • 김거유
    • Food Science of Animal Resources
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2000
  • Effects of Ph on the activity of lipase isolated from milk fat globules were investigated, using coconut oil and homogenized milk as substrate. With buttermilk as an enzyme source for coconut oil and homogenized milk substrates bell-shaped curve was observed at $37^{\circ}C$, having the highest activity at pH 9.5. However, lipase activity at $0^{\circ}C$ continuously increased up to pH 10.0. With the purified lipase for homogenized milk substrate, the bell -shaped curve and the highest activity were observed at $37^{\circ}C$ and pH 9.0, respectively. Lipase activity at $0^{\circ}C$ increased up to pH 10.0. The addition of bovine serum albumin to the coconut oil shifted the optimum pH to pH 9.5 and the activity remarkably declined at pH 10.0. The effect of pH on the stability of purified lipase was depending on the temperature. Wehn the lipase kept at $37^{\circ}C$ for 20 minutes, it's activity remarkably declined as pH increased: the activity at pH 10.0 was declined by 13% of that pH 8.5. However, when the lipase kept at $4^{\circ}C$ for 60minutes, the activity was stable within the range of pH 7.5 to 10.0.

  • PDF

Purification and Characterization of Cold Active Lipase from Psychrotrophic Aeromonas sp. LPB 4

  • Lee, Han-Ki;Ahn, Min-Jung;Kwak, Sung-Ho;Song, Won-Ho;Jeong, Byeong-Chul
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.22-27
    • /
    • 2003
  • A lipase from Aeromonas sp. LPB 4, a psychrotophile isolated from a sea sediment was purified and characterized. The lipase was purified 53.5 fold to a homogeneous state by acetone precipitation and QAE sephadex column chromatography and its molecular weight was determined to be 50 kDa by SDS-PAGE. The enzyme exhibited maximum activity at 10$^{\circ}C$ and was stable at temperatures lower than 50$^{\circ}C$. This lipase favored substrates containing medium carbon chain of acyl group, while too low and high carbon chain decreased its activity. The lipolytic activity of purified lipase was slightly increased by the addition of 0.1% detergent, but decreased by 1% of detergent. Butanol severely decreased the lipase activity while methanol increased the activity about 15%.

Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3

  • Wang, Jian-Rong;Li, Yang-Yuan;Liu, Danni
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.845-855
    • /
    • 2015
  • The present study describes the gene cloning and high-level expression of an alkaline and thermostable lipase gene from Trichosporon coremiiforme V3. Nucleotide analysis revealed that this lipase gene has an open reading frame of 1,692 bp without any introns, encoding a protein of 563 amino acid residues. The lipase gene without its signal sequence was cloned into plasmid pPICZαA and overexpressed in Pichia pastoris X33. The maximum lipase activity of recombinant lipase was 5,000 U/ml, which was obtained in fed-batch cultivation after 168 h induction with methanol in a 50 L bioreactor. The purified lipase showed high temperature tolerance, and being stable at 60℃ and kept 45% enzyme activity after 1 h incubation at 70℃. The stability, effects of metal ions and other reagents were also determined. The chain length specificity of the recombinant lipase showed high activity toward triolein (C18:1) and tripalmitin (C16:0).

Studies of interesterification properties of irradiated lipases (방사선 조사선량에 따른 lipase의 interesterification 반응특성 변화 연구)

  • Lee, Chi-Woo;Heo, Yoon-Ji;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • This study was conducted to prove the effect of irradiation on lipases (lipase AK, lipase AH, lipase PS-D, Lipozyme TLIM, Lipozyme RMIM and Novozyme SP435) which were used for interesterification reaction using batch type reactor. Through such interesterification, structured lipid (1(3)-palmitoyl-2-oleoyl-3(1)-stearoyl, POS) was synthesized by lipase treated with irradiation at different doses (0, 3, 7, 14, 29 and 59 kGy) using canola oil, palmitic ethyl ester (PEE) and stearic ethyl ester (StEE). After the reaction, fatty acid composition of triacylglycerol (TAG) in structured lipid was analyzed to compare the lipase activity. The results showed that activity of the irradiated lipase AH, PS-D and Novozyme SP435 with certain dose (3 kGy) were slightly improved. Such change of lipase activity suggested that irradiation might affect on the interesterification properties. Especially, Lipase AK, Lipozyme TLIM and Lipozyme RMIM after at 3 kGy irradiation showed that content of stearic acid ($C_{18:0}$) was increased while palmitic acid ($C_{16:0}$) decreased in the interesterified products.

Stability Analysis of Bacillus stearothermopilus L1 Lipase Fused with a Cellulose-binding Domain

  • Hwang Sangpill;Ahn Ik-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.329-333
    • /
    • 2005
  • This study was designed to investigate the stability of a lipase fused with a cellulose­binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene in Trichoderma hazianum and a lipase gene in Bacillus stearother­mophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the re­action-dependent factors (RDF). RIF includes the reaction conditions such as pH and tempera­ture, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and $50^{\circ}C$ were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal­line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over $70\%$ of the initial activity.

Separation and Purification of Lipase Inhibitory Peptide from Fermented Milk by Lactobacillus plantarum Q180

  • Kim, Seulki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • In this study, we separated and purified lipase inhibitory peptide from fermented milk by Lactobacillus plantarum Q180 with the aim of developing a new functional anti-lipase activity yogurt product. L. plantarum 180 was inoculated into 10% reconstituted skimmed milk and incubated at 37℃ until the pH of the culture reached pH 4.4. The lipase activity was measured using porcine pancreatic lipase. The lipase inhibitory peptides were gradually isolated by ultrafiltration, reversed phase column chromatography (RPC), reversed phase high-performance liquid chromatography (RP-HPLC), and gel permeation high-performance liquid chromatography (GP-HPLC) from the fermented milk by L. plantarum Q180. An ODS-AQ column was used for the RPC, a Vydac C18 column for the RP-HPLC, and a Superdex Peptide HR column for the GP-HPLC. The peptide was composed of Asp, Thr, Ile, Ser, Ala, and Gln, and the anti-lipase activity (IC50) was 2,817 ㎍/mL.

Hydrolysis of Olive Oil by Lipase, Immobilized on Hydrophobic Support

  • Jung, Ju-Young;Yun, Hyun-Shik;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 1997
  • Two commercially available lipases, Lipase OF (non-specific lipase from Candida rugosa) and Lipolase 100T (1, 3-specific lipase from Aspergillus niger), were immobilized on insoluble hydrophobic support HDPE (high density polyethylene) by the physical adsorption method. Hydrolysis performance was enhanced by mixing a non-specific Lipase OF and a 1, 3-specific Lipolase 100T at a 2 : 1 ratio. The results also showed that the immobilized lipase maintained its activity at broader temperature ($25~55^{\circ}C$) and pH (4-8) ranges than soluble lipases. In the presence of organic solvent (isooctane), the immobilized lipase retained most of its activity in upto 12 runs of hydrolysis experiment. However, without organic solvent in the reaction mixture, the immobilized lipase maintained most of its activity even after 20 runs of hydrolysis experiment.

  • PDF