• Title/Summary/Keyword: linter fiber

Search Result 10, Processing Time 0.029 seconds

The Separated Refining System for Cotton Staple and Linter Fibers: Refining Efficiency and Paper Properties (스테이플 및 린터 면 섬유의 분리 고해 특성에 관한 연구: 고해 효율과 종이 물성)

  • 윤성훈;이영석;김태영;김진영
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.8-16
    • /
    • 2003
  • The objective of this study was to investigate the potential application of the separated refining system in the papermaking process using cotton pulps. The cotton staple and linter fibers were expected to show a great difference in their refining responses due to their morphological and physical differences. Experiments were conducted to examine the differences in flocculation tendency, CED viscosity, fiber length, handsheet properties and the SEM surface images between staple and linter fibers at a given refining degree. These fibers were also subjected to separated refining in a laboratory-scale beater and in a mill-scale refiner as well. The effect of the separated refining on the refining rates and papermaking properties were evaluated. Results obtained are summarized as follows: 1. Fiber flocculation tendency of cotton staple was estimated to be significantly greater than that of linter fibers; 2. The staple fibers showed higher cellulose DP, longer fiber length and higher sheet strength at a given refining degree compared to linter fibers, but remarkably slower refining rate was observed; 3. The separated refining system exhibited a significant increase in sheet strengths, especiauy in folding endurance, with an increase in the fibrillation on the surface of staple fibers, but slightly lower or comparable fiber length after refining to the mixed refining system; 4. Similar results were also obtained from the machine trial in which about 7-8% energy saving effects were achived in the separated refining system. On the basis of the results observed in this study, it was concluded that a significant increase in paper strength and a substantial reduction in refining energy consumption could be achieved using the separated refining system for the cotton staple and linter fiber stock refining.

A Physico-chemical Change of Dissolving Pulp by Dry Milling and Fractionation (건식분쇄와 분급에 의한 용해용 펄프의 특성변화)

  • Kim, Taeyoung;Lee, Songmin;Heo, Yongdae;Kim, Jinyoung;Joung, Yangjin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.23-32
    • /
    • 2015
  • In this study, chemical and physical changes of dissolving pulps which have similar viscosity by dry milling and fractionation were investigated. We used two types of dissolving pulp made from wood and cotton linter fiber, respectively. Dry milling was executed by knife cutter and pulp powders were fractionated by sieve shaker into 4 grades. We analyzed fiber properties, crystallinity index, viscosity, molecular weight of pulp sheet and powders. It was found that poly-dispersity index of cotton linter pulp was smaller than that of wood pulp, meaning that cotton pulp has more narrow molecular weight distribution. It was assumed that these were related to exposure times to chemical treatment which cut cellulose chains not evenly. At least 4 times of chemical treatments for wood pulp were executed and only two times of chemical treatments for cotton linter pulp were done. After dry milling average molecular weight and crystallinity index of cotton linter pulp powders were reduced and these were related to fines content and shape of pulp powders.

The efect of freeness and paper physical properties treated with high and low molecular weight cellulase in the different surface pore sized fibers (Cellulase의 분자량과 섬유소의 표면공극 상이성이 여수도 및 종이의 강도적 특성에 미치는 영향)

  • 김병현;신종순;강영립;어영호
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.141-155
    • /
    • 2000
  • To examine how the difference of molecular weight distribution of cellulase influenced the beating process according to surface pore size of the fiber, high molecular weight enzyme and low one were applied to soft wood pulp, hard wood pulp, cotton linter pulp. Some enzymes with the distribution of low molecular weight penetrated into cellulose in the proportion of surface pore size and the results were negative as like : the low viscosity, decrease of refining Yield, decrease of fine fibers content and so on. But in cotton linter pulp in the small surface area, the fiber softness was increased and it had a positive result that the paper intensity was high. Other enzymes with the distribution of high molecular weight had an enzyme reaction on the most surfaces of cellulose. They were effective in eliminating the fuzz of hydrophile fine fibers and the freeness was increased.

  • PDF

Evaluation of Beatability of Two Kinds of Cotton Linter Pulps (면 린터 펄프 종류에 따른 고해적성 평가)

  • Shin, Hyeon-Sik;Park, Jong-Moon;Lee, Jin-Ho;Kim, Jeong-Jung;Kil, Jung-Ha
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.56-63
    • /
    • 2013
  • In this study, paper mill applicability of two kinds of cotton pulps which have different initial freeness, fiber length and intrinsic fiber strength were investigated. Basic properties such as CED viscosity, fiber length, and crystallinity of major two kinds of cotton pulps were analyzed, and beatability of cotton pulps and physical properties of handsheet made from two kinds of cotton pulps were compared. Laboratory beating was performed at different refining conditions such as refining loads and freenesses. Relationship between beating degree and physical properties of handsheet were compared to seek optimum condition of refining for different cotton pulps application to paper mill.

Changes of Handsheet Fracture Toughness by Wood and Cotton Fibers Mixing (목재섬유와 면섬유의 혼합에 따른 수초지의 파괴인성 변화)

  • Kim, Jeong-Jung;Jang, Dong-Uk;Yoon, Sang-Gu;Shin, Hyeon-Sik;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.81-87
    • /
    • 2014
  • Conditions of paper manufacturing process should be changed depending on the end use and paper properties. Most of the case, mixed pulps with long softwood fibers and short hardwood fibers are used to achieve proper qualities of product with reasonable production cost. For specialty paper manufacture the wood pulp and cotton linter pulp are usually mixed together. The objectives of this study is to analyze physical, mechanical and fracture mechanical properties of paper depending on SwBKP, HwBKP and cotton linter pulp(CLP) mixing. When the mixing ratio of SwBKP was increased, strength properties, such as tensile, tear, and folding endurance, were also increased. When the mixing ratio of SwBKP and HwBKP was increased, stress concentration index was decreased and fracture toughness was increased.

Towel Experience and Consumer Satisfaction (소비자 체험조사를 통한 타월 만족도 분석 연구)

  • Song, Kyung-Hun;Heo, Mee-Ok
    • Korean Journal of Human Ecology
    • /
    • v.19 no.6
    • /
    • pp.1063-1070
    • /
    • 2010
  • This study examined 12 types of towels with differing fabric material, function, quality, printing, pile length, twist, etc. from a towel company which manufactures and distributes products domestically. After 3 months of use by consumers, a consumer satisfaction survey was administered and results analyzed. Four types of towels were assigned to each group and the towels were used every day for 3 months. Participant feelings after using the towel for the first time and after using it for three months were investigated. The questionnaire consisted of 26 questions on a 5-point Licket-type scale. The first 13 questions measured perceptions of absorption, touch, fine fiber loss, contamination, deformation, drying speed, and design. Other questions compared differences between the two towel types in terms of their material, function, quality, printing, pile length, and degree of twisting. Results showed that, with regards to weight, consumers preferred towels between 130~150g and a thickness of around 1.7~1.8mm. The bamboo towel was considered superior to the cotton towel in terms of sense of touch and did not happen linter after washing. The antibacterial towel was considered better than the cotton towel in terms of absorption but in terms of contamination, participants felt the antibacterial towel became dirty more easily than the cotton towel. We thought that it might be influence of the color of towel. Low-quality towels became stiffer and misshapen more easily than higher-quality towels. But the study showed that the consumers did not perceive significant differences in the towels' quality. Printed towels became thinner and their color changed more with washing. The consumers preferred the design of jacquard towels to printed towels. Towels with short piles was happened more linter than the towel with long pile after washing. Non-twisted towel were better than the highly-twisted towel in terms of sense of touch and absorption but the non-twisted towel happened more linter after washing and became dirty more easily.

Hanji Manufacturing from Bast Fibers of Kenaf, Hibiscus cannabinus (양마의 인피섬유를 이용한 한지제조)

  • Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • The utilization of non-woody fibers with the fast growing annual plants has occurred in the paper industry to replace wood and preserve environment of the earth. The non-woody fibers generally used for papermaking are paper mulberry, gampi, manila hemp, rice straw, bamboo, and coton linter etc.. Recently Kenaf has been spot-lighted for the same application. Kenaf is an annual plant of Hibiscus species of Malvaceae family. Kenaf, a rapid growing and high harvesting non-woody fiber plant, was identified as one of the promising fiber sources for the production of paper pulp. This study was carried out to investigate the pulping characteristics of Kenaf bast fiber for Hanji (traditional Korean paper) manufacturing by different pulping methods, such as alkali, alkali-peroxide and sulfomethylated pulpings. It was possible to make superior grade of Hanji. Especially sulfomethylated pulping was resulted in superior pulp in terms of higher yields and qualities in comparison to those of the other pulping methods. Hanji from sulfomethylated pulp was shown the highest brightness of over 60% and higher sheet strength. In addition, the morphological features of pulp fibers (pulp compositions) affect to the sheet properties. Therefore the effect of fiber distribution index(FDI) which was calculated from the data of Confocal laser scanning microscopy(CLSM) on the sheet properties of Kenaf Hanji was also discussed.

Nutritional Value of Cottonseeds and It's Derived Products : I. Physical Fractionations and Proximate Composition

  • Mujahid, A.;Abdullah, M.;Barque, A.R.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.348-355
    • /
    • 2000
  • The study was conducted to determine physicochemical parameters in various physical fractions (linter, hull, kernel, oil and meal) of cottonseed of different varieties (MNH 147, CIM 240, NIAB 78, FH 87, CIM 109, MNH 93, FH 682, GOHAR 87, SLS 1 and B 557). Average components of linter, hull, and kernel in different varieties of cotton were 12.21, 28.24 and 70.42%, respectively. Average percentage of meal and oil was 48.97 and 22.09% in seed, and 69.28 and 30.72% in kernel, respectively. Maximum percentage of meal was recovered from variety CIM 240 and lowest in variety CIM 109. Statistical analysls revealed variety differences (p<0.05) in seed and it's components. Average contents of crude protein, crude fiber and ash was 22.31, 17.74 and 4.27% in seed, 2.85, 56.50 and 2.61% in hull; 32.62, 3.45 and 4.01 % in kernel; 47.15, 5.00 and 5.78% in meal, respectively. Average contents of Ca, p, Mg, K, Na and Cl were 0.09, 0.22, 0.26, 0.65, 0.009 and 0.035% in seed; 0.12, 0.07, 0.09, 0.51, 0.020 and 0.034% in hull and 0.16, 0.59, 0.32, 1.01, 0.03 and 0.07% in meal of different varieties of cotton, respectively. Fe, Zn, Cu and Mn were 141.35, 24.55, 186.50 and 27.12 mg/kg in seed; 158.48, 2.06, 74.60, and 22.17 mg/kg in hulls; and 167.62, 20.30, 185.83 and 20.67 mg/kg in meal, respectively. Significant varietal differences were observed in proximate composition and mineral contents of cottonseeds and derived products. Cottonseeds and their products of varieties FH 87, CIM 109 and MNH 93 showed higher nutrient density while lower was observed in varieties CIM 240, SLS I and FH 682.

A Study on the Friction Characteristics of Paper Facing (페이퍼 페이싱의 마찰 특성에 관한 연구)

  • 안병길;최웅수;권오관;문탁진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1988.11a
    • /
    • pp.49-56
    • /
    • 1988
  • 자동차의 동력전달 수단으로 사용되는 클러치는 그 기능에 따라 수동식과 자동식으로 구분된다. 전자의 경우 transmission과 engine의 동력을 dry contact mechanism으로 단속 제어하는 반면 후자는 hadraulic torque drive와 engine의 동력을 transmission box내의 기어유에 의한 wet contact mechanism으로 단속 제어한다. 자동식 클러치에 사용되는 paper facing은 cellulose fiber를 기본으로 하여 열경화성 수지 및 무기충진제등을 함유하고 있으나, 특히 무기충진제의 종류 및 첨가량이 paper facing의 마찰특성에 크게 영향을 미친다. 본 연구는 목재펄프(wood pulp), 린터펄프(linter pulp)등의 펄프를 주체로 하고 열경화성 수지와 무기충지제등을 첨가한 마찰재를 제조하여 무기충진제들의 마찰특성에 미치는 영향을 조사함으로써 paper facing의 기초 자료를 얻는데 그 목적이 있다.

  • PDF

Effects of Beating of Cotton Linter Pulps with Titanium Dioxide on Paper Properties (면섬유 고해 시 TiO2 혼합처리가 종이물성에 미치는 영향)

  • Kil, Jung-Ha;Shin, Hyeon-Sik;Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • To improve the physical properties, such as swelling and flexibility, of the cotton fiber, sodium hydroxide or cellulase was used for pretreatment before the beating process. Titanium dioxide was blended during beating process to improve the fibrillation of cotton fibers and even distribution of fillers to cotton fibers. Blending with titanium dioxide during beating process, led to improve the tensile strength and beating degree This treatment also improved the opacity, resulted by well dispersed titanium dioxide during blending. By the blending of titanium dioxide during beating process, similar impact of cotton fiber with cellulase or sodium hydroxide pretreatment was achieved. To improve the tensile strength and opacity of cotton paper simultaneously, titanium dioxide blending in during beating process was found as effective treatment.