• Title/Summary/Keyword: linguistic multi-criteria group decision making

Search Result 4, Processing Time 0.023 seconds

Multi-Criteria Group Decision Making under Imprecise Preference Judgments: Using Fuzzy Logic with Linguistic Quantifier

  • Choi, Duke-Hyun;Ahn, Byeong-Seok;Kim, Soung-Hie
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.557-567
    • /
    • 2005
  • The increasing complexity of the socio-economic environments makes it less and less possible for single decision-maker to consider all relevant aspects of problem. Therefore are, many organizations employ groups in decision making. In this paper, we present a multiperson decision making method using fuzzy logic with linguistic quantifier when each of group members specifies imprecise judgments possibly both on performance evaluations of alternatives with respect to the multiperson criteria and on the criteria. Inexact or vague preferences have appeared in the decision making literatures with a view to relaxing the burdens of preference specifications imposed to the decision-makers and thus taking into account the vagueness of human judgments. Allowing for the types of imprecise judgments in the model, however, makes more difficult a clear selection of alternative(s) that a group wants to make. So, further interactions with the decision-makers may proceed to the extent to compensate for the initial comforts of preference specifications. These interaction may not however guarantee the selection of the best alternative to implement. To circumvent this deadlock situation, we present a procedure for obtaining a satisfying solution by the use of linguistic quantifier guided aggregation which implies fuzzy majority. This is an approach to combine a prescriptive decision method via a mathematical programming and a well-established approximate solution method to aggregate multiple objects.

  • PDF

Multi-Criteria Group Decision Making under Imprecise Preference Judgments : Using Fuzzy Logic with Linguistic Quantifier (불명료한 선호정보 하의 다기준 그룹의사결정 : Linguistic Quantifier를 통한 퍼지논리 활용)

  • Choi, Duke Hyun;Ahn, Byeong Seok;Kim, Soung Hie
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.3
    • /
    • pp.15-32
    • /
    • 2006
  • The increasing complexity of the socio-economic environments makes it less and less possible for single decision-maker to consider all relevant aspects of problem. Therefore, many organizations employ groups in decision making. In this paper, we present a multiperson decision making method using fuzzy logic with linguistic quantifier when each of group members specifies imprecise judgments possibly both on performance evaluations of alternatives with respect to the multiple criteria and on the criteria. Inexact or vague preferences have appeared in the decision making literatures with a view to relaxing the burdens of preference specifications imposed to the decision-makers and thus taking into account the vagueness of human judgments. Allowing for the types of imprecise judgments in the model, however, makes more difficult a clear selection of alternative(s) that a group wants to make. So, further interactions with the decision-makers may proceed to the extent to compensate for the initial comforts of preference specifications. These interactions may not however guarantee the selection of the best alternative to implement. To circumvent this deadlock situation, we present a procedure for obtaining a satisfying solution by the use of linguistic quantifier guided aggregation which implies fuzzy majority. This is an approach to combine a prescriptive decision method via a mathematical programming and a well-established approximate solution method to aggregate multiple objects.

  • PDF

An Induced Hesitant Linguistic Aggregation Operator and Its Application for Creating Fuzzy Ontology

  • Kong, Mingming;Ren, Fangling;Park, Doo-Soon;Hao, Fei;Pei, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4952-4975
    • /
    • 2018
  • An induced hesitant linguistic aggregation operator is investigated in the paper, in which, hesitant fuzzy linguistic evaluation values are associated with probabilistic information. To deal with these hesitant fuzzy linguistic information, an induced hesitant fuzzy linguistic probabilistic ordered weighted averaging (IHFLPOWA) operator is proposed, monotonicity, boundary and idempotency of IHFLPOWA are proved. Then andness, orness and the entropy of dispersion of IHFLPOWA are analyzed, which are used to characterize the weighting vector of the operator, these properties show that IHFLPOWA is extensions of the induced linguistic ordered weighted averaging operator and linguistic probabilistic aggregation operator. In this paper, IHFLPOWA is utilized to gather linguistic information and create fuzzy ontologies, and a movie fuzzy ontology as an illustrative case study is used to show the elaboration of the proposed method and comparison with the existing linguistic aggregation operators, it seems that the IHFLPOWA operator is an useful and alternative operator for dealing with hesitant fuzzy linguistic information with probabilistic information.

Group Decision Making for New Professor Selection Using Fuzzy TOPSIS (퍼지 TOPSIS를 이용한 신임교수선택을 위한 집단의사결정)

  • Kim, Ki-Yoon;Yang, Dong-Gu
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.229-239
    • /
    • 2016
  • The aim of this paper is to extend the TOPSIS(Technique for Order Performance by Similarity to Ideal Solution) to the fuzzy environment for solving the new professor selection problem in a university. In order to achieve the goal, the rating of each candidate and the weight of each criterion are described by linguistic terms which can be expressed in trapezoidal fuzzy numbers. In this paper, a vertex method is proposed to calculate the distance between two trapezoidal fuzzy numbers. According to the concept of the TOPSIS, a closeness coefficient is defined to determine the ranking order of all candidates. This research derived; 1) 4 evaluation criteria(research results, education and research competency, personality, major suitability) for new professor selection, 2) the 5 step procedure of the proposed fuzzy TOPSIS method for the group decision, 3) priorities of 4 candidates in the new professor selection case. The results of this paper will be useful to practical expert who is interested in analyzing fuzzy data and its multi-criteria decision-making tool for personal selection problem in personal management. Finally, the theoretical and practical implications of the findings were discussed and the directions for future research were suggested.