• Title/Summary/Keyword: linguistic fuzzy system

Search Result 193, Processing Time 0.024 seconds

Fuzzy Modeling of Activated Sludge Process Using Linear Reasoning Method (하수처리 프로세스의 선형 추론 퍼지 모델링)

  • Oh, Sung-Kwun;Park, Jong-Jin;Lee, Seong-Ju;Hwang, Hee-Soo;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.417-420
    • /
    • 1990
  • The conventional quantitative techniques of system analysis are intrinsically unsuited for dealing with humanistic systems. Therefore, the rule based modeling of fuzzy linguistic type has been developed for the analysis of humanistic systems and complex systems and it is very significant for analysis and design of fuzzy logic controller. The activated sludge process is a commonly used method for treating sewage and waste waters. A mathematical tool to build a fuzzy model of the activated sludge process where fuzzy implications and linear reasoning are used is presented in here. A root-mean square error is used as the criterion of the fuzzy model's adequacy to the A.S.P. and the least square method is used for the identification of optimum consequence parameters. A method of modeling of the activated sludge process using its input-output data and simulation results for its application are shown.

  • PDF

Development of Fuzzy Inference Systems for Protection to Electrical Accidents of Laboratory (연구실 전기사고방지를 위한 퍼지 추론 시스템 개발)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3636-3643
    • /
    • 2011
  • To prevent the electrical accidents in the laboratory, we identify problems for periodic inspections of the electric field and develop a fuzzy inference system that can be practically applied to check items. Focusing on electrical safety in the lab environment, we draw check items that can be applied in common and develop a standard checklist that is consistent with the laboratory electrical safety and the periodic inspections. Using the standard checklist we select the items that may contain a linguistic ambiguity and define the membership functions for these items. We also have a safety rating defined by the membership function. Using these fuzzy variables we form the fuzzy rules in the form of 'If-Then' and develop a fuzzy inference system through the fuzzy engine. From this, electrical accidents could be prevented in advance continuously by managing the intelligent and efficient inspection and electrical safety to prevent the electrical accidents in the laboratory.

Fuzzy Based Approach for the Safety Assessment of Human Body under ELF EM field Considering Power System States

  • Kim, Sang C.;Kim, Doo H.
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.117-122
    • /
    • 1997
  • This paper presents a study on the fuzzy based approach for the safety assessment of human body under ELF electric and magnetic(EM) field considering power system states. The analysis of ELF EM field based on quasi-static method is introduced. UP to the present, the analysis of ELF EM field has been conducted with the consideration of one transmission line, or a power line model only In this paper, however, the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes and the states are classified into two types, normal state resulting from normal operation and emergency state from outages. In order to analyze the uncertainty in the normal state, the Monte Carlo Simulation, a statistic approach was introduced and line current and bus voltage distribution are calculated by a contingency analysis method, in the emergency state. To access the safety of human body, the approach based on fuzzy linguistic variable is adopted to overcome the shortcomings of the assessment by a crisp set concept. In order to validate the usefulness of the approach suggested herein, the case study using a sample system with 765(kV) was done. The results are presented and discussed.

  • PDF

Intellignce Modeling of Nonlinear Process System Using Fuzzy Neyral Networks-based Structure (퍼지-뉴럴네트워크 구조에 의한 비선형 공정시스템의 지능형 모델링)

  • 오성권;노석범;남궁문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.41-55
    • /
    • 1995
  • In this paper, an optimal idenfication method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together wlth optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzzy-neural networks(FNNs) are tuned automatically using improved modified complex method and modified learning algorithm. For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activateti sluge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

HYBRID PID FLC using sliding Mode (슬라이딩 모드를 이용한 HYBRID PID형 퍼지제어기)

  • Moon, Jun-Ho;Cho, Jong-Hoon;Oh, Kwang-Hyun;Kim, Tae-Un;Nam, Moon-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.992-994
    • /
    • 1995
  • FLC has a good performance for complication system or unknown model by using human linguistic method but many part control design are based on expert knowledge or trial-error method and it is difficult to prove stability and robustness of controller. In this paper we improve this problem by setting fuzzy rules by dividing phase plane of error and rate of error change by switching surface. We can guarantee the stability in nonlinear system, and also in fuzzy PID type controller the complexity of controller design is increased by increasing the number of input variables and defining more range of operation if we want performance of more specific rules, thus we need to fine the method to decrease the number of control rules used in FLC design. In this paper the algorithm is validated by simulation using conventional FLC and proposed method.

  • PDF

An Adaptive Tutoring System based on Fuzzy sets for Learning by Level (수준별 학습을 위한 퍼지 집합 기반 적응형 교수 시스템)

  • Choi, Sook-Young;So, Ji-Sook;Lee, Sun-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.121-135
    • /
    • 2003
  • This paper proposes a web-based adaptive tutoring system based on fuzzy set that provides learning materials and questions dynamically according to students' knowledge state, and gives advices for the learning after an evaluation. For this, we design a courseware knowledge structure systematically and then construct a fuzzy level set on the basis of it considering importance of learning targets, difficulty of learning materials and relation degree between learning targets and learning materials. Using the fuzzy level set, our system offers learning materials and questions to adapt to individual students. Moreover, a result of the test is evaluated with fuzzy linguistic variable. Appling the fuzzy concept to the tutoring system could naturally consider and deal with various and uncertain items of learning environment thus could offer more flexible and effective instruction-learning methods.

  • PDF

Building of Database Retrieval System based on Knowledge (지식기반 데이터베이스 검색 시스템의 구축)

  • 박계각;서기열;임정빈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.450-453
    • /
    • 1999
  • In this paper, the cooperative retrieval system to interface between users and DB, image data and knowledge-based database(KDB), being formed in a linguistic knowledge expression, of system is presented. Conventional database retrieval systems provide the data only in case that the data exactly corresponding with users' requirements exist in these systems, but don't in other cases. In order to resolve this problem, if the data users require are not in existence, this system shows the data and image information which are approximate with knowledge-based database materialized by fuzzy clustering and allocation of linguistic label.

  • PDF

Risk Analysis for the Rotorcraft Landing System Using Comparative Models Based on Fuzzy (퍼지 기반 다양한 모델을 이용한 회전익 항공기 착륙장치의 위험 우선순위 평가)

  • Na, Seong Hyeon;Lee, Gwang Eun;Koo, Jeong Mo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • In the case of military supplies, any potential failure and causes of failures must be considered. This study is aimed at examining the failure modes of a rotorcraft landing system to identify the priority items. Failure mode and effects analysis (FMEA) is applied to the rotorcraft landing system. In general, the FMEA is used to evaluate the reliability in engineering fields. Three elements, specifically, the severity, occurrence, and detectability are used to evaluate the failure modes. The risk priority number (RPN) can be obtained by multiplying the scores or the risk levels pertaining to severity, occurrence, and detectability. In this study, different weights of the three elements are considered for the RPN assessment to implement the FMEA. Furthermore, the FMEA is implemented using a fuzzy rule base, similarity aggregation model (SAM), and grey theory model (GTM) to perform a comparative analysis. The same input data are used for all models to enable a fair comparison. The FMEA is applied to military supplies by considering methodological issues. In general, the fuzzy theory is based on a hypothesis regarding the likelihood of the conversion of the crisp value to the fuzzy input. Fuzzy FMEA is the basic method to obtain the fuzzy RPN. The three elements of the FMEA are used as five linguistic terms. The membership functions as triangular fuzzy sets are the simplest models defined by the three elements. In addition, a fuzzy set is described using a membership function mapping the elements to the intervals 0 and 1. The fuzzy rule base is designed to identify the failure modes according to the expert knowledge. The IF-THEN criterion of the fuzzy rule base is formulated to convert a fuzzy input into a fuzzy output. The total number of rules is 125 in the fuzzy rule base. The SAM expresses the judgment corresponding to the individual experiences of the experts performing FMEA as weights. Implementing the SAM is of significance when operating fuzzy sets regarding the expert opinion and can confirm the concurrence of expert opinion. The GTM can perform defuzzification to obtain a crisp value from a fuzzy membership function and determine the priorities by considering the degree of relation and the form of a matrix and weights for the severity, occurrence, and detectability. The proposed models prioritize the failure modes of the rotorcraft landing system. The conventional FMEA and fuzzy rule base can set the same priorities. SAM and GTM can set different priorities with objectivity through weight setting.

Discretization of Numerical Attributes and Approximate Reasoning by using Rough Membership Function) (러프 소속 함수를 이용한 수치 속성의 이산화와 근사 추론)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.545-557
    • /
    • 2001
  • In this paper we propose a hierarchical classification algorithm based on rough membership function which can reason a new object approximately. We use the fuzzy reasoning method that substitutes fuzzy membership value for linguistic uncertainty and reason approximately based on the composition of membership values of conditional sttributes Here we use the rough membership function instead of the fuzzy membership function It can reduce the process that the fuzzy algorithm using fuzzy membership function produces fuzzy rules In addition, we transform the information system to the understandable minimal decision information system In order to do we, study the discretization of continuous valued attributes and propose the discretization algorithm based on the rough membership function and the entropy of the information theory The test shows a good partition that produce the smaller decision system We experimented the IRIS data etc. using our proposed algorithm The experimental results with IRIS data shows 96%~98% rate of classification.

  • PDF

Fuzzy Rule Generation and Building Inference Network using Neural Networks (신경망을 이용한 퍼지 규칙 생성과 추론망 구축)

  • 이상령;이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 1997
  • Knowledge acquisition is one of the most difficult problems in designing fuzzy systems. As application domains of fuzzy systems become larger and more complex, it is more difficult to find the relations among the system's input- outpiit variables. Moreover, it takes a lot of efforts to formulate expert's knowledge about complex systems' control actions by linguistic variables. Another difficulty is to define and adjust membership functions properly. Soin conventional fuzzy systems, the membership functions should be adjusted to improve the system performance. This is time-consuming process. In this paper, we suggest a new approach to design a fuzzy system. We design a fuzzy system using two neural networks, Kohonen neural network and backpropagation neural network, which generate fuzzy rules automatically and construct inference network. Since fuzzy inference is performed based on fuzzy relation in this approach, we don't need the membership functions of each variable. Therefore it is unnecessary to define and adjust membership functions and we can get fuzzy rules automatically. The design process of fuzzy system becomes simple. The proposed approach is applied to a simulated automatic car speed control system. We can be sure that this approach not only makes the design process of fuzzy systems simple but also produces appropriate inference results.

  • PDF