• 제목/요약/키워드: linear wireless sensor networks

검색결과 49건 처리시간 0.026초

무선 센서 네트워크의 목표 수명을 만족시키기 위한 에너지 효율적 라우팅 (Energy Efficient Routing for Satisfying Target Lifetime in Wireless Sensor Networks)

  • 이건택;박선주;김학진;한승재
    • 한국정보과학회논문지:정보통신
    • /
    • 제36권6호
    • /
    • pp.505-513
    • /
    • 2009
  • 대부분의 무선 센서 네트워크를 활용한 어플리케이션에서는 네트워크를 설치한 후 언제까지 작동해야 하는 지를 나타내는 목표 수명(target lifetime)을 가진다. 하지만 무선 센서 네트워크는 많은 경우에 각 센서 노드들이 배터리를 이용하여 작동하기 때문에 목표 수명을 만족시키는 것은 쉬운 문제가 아니며 이를 달성하기 위해서는 에너지 효율적인 라우팅 알고리즘이 필요하다. 본 논문에서는 무선 센서 네트워크의 목표 수명을 만족시키기 위한 라우팅 알고리즘을 제안한다. 제안하는 알고리즘은 선형 프로그래밍(Linear Programming)을 이용하여 에너지 효율적인 경로를 찾는 동시에 감지 비율(sensing rate)을 조절함으로써 무선 센서 네트워크의 목표 수명을 만족시킨다. 시뮬레이션을 통해 제안한 기법의 성능을 다른 기법들의 성능과 비교한다.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

Weight Adjustment Scheme Based on Hop Count in Q-routing for Software Defined Networks-enabled Wireless Sensor Networks

  • Godfrey, Daniel;Jang, Jinsoo;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.22-30
    • /
    • 2022
  • The reinforcement learning algorithm has proven its potential in solving sequential decision-making problems under uncertainties, such as finding paths to route data packets in wireless sensor networks. With reinforcement learning, the computation of the optimum path requires careful definition of the so-called reward function, which is defined as a linear function that aggregates multiple objective functions into a single objective to compute a numerical value (reward) to be maximized. In a typical defined linear reward function, the multiple objectives to be optimized are integrated in the form of a weighted sum with fixed weighting factors for all learning agents. This study proposes a reinforcement learning -based routing protocol for wireless sensor network, where different learning agents prioritize different objective goals by assigning weighting factors to the aggregated objectives of the reward function. We assign appropriate weighting factors to the objectives in the reward function of a sensor node according to its hop-count distance to the sink node. We expect this approach to enhance the effectiveness of multi-objective reinforcement learning for wireless sensor networks with a balanced trade-off among competing parameters. Furthermore, we propose SDN (Software Defined Networks) architecture with multiple controllers for constant network monitoring to allow learning agents to adapt according to the dynamics of the network conditions. Simulation results show that our proposed scheme enhances the performance of wireless sensor network under varied conditions, such as the node density and traffic intensity, with a good trade-off among competing performance metrics.

Distributed Decision-Making in Wireless Sensor Networks for Online Structural Health Monitoring

  • Ling, Qing;Tian, Zhi;Li, Yue
    • Journal of Communications and Networks
    • /
    • 제11권4호
    • /
    • pp.350-358
    • /
    • 2009
  • In a wireless sensor network (WSN) setting, this paper presents a distributed decision-making framework and illustrates its application in an online structural health monitoring (SHM) system. The objective is to recover a damage severity vector, which identifies, localizes, and quantifies damages in a structure, via distributive and collaborative decision-making among wireless sensors. Observing the fact that damages are generally scarce in a structure, this paper develops a nonlinear 0-norm minimization formulation to recover the sparse damage severity vector, then relaxes it to a linear and distributively tractable one. An optimal algorithm based on the alternating direction method of multipliers (ADMM) and a heuristic distributed linear programming (DLP) algorithm are proposed to estimate the damage severity vector distributively. By limiting sensors to exchange information among neighboring sensors, the distributed decision-making algorithms reduce communication costs, thus alleviate the channel interference and prolong the network lifetime. Simulation results in monitoring a steel frame structure prove the effectiveness of the proposed algorithms.

An Efficient Public Key Based Security Architecture for Wireless Sensor Networks

  • Haque, Mokammel;Pathan, Al-Sakib Khan;Hong, Choong-Seon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.1098-1099
    • /
    • 2007
  • In this paper, we propose a public key based security architecture for Wireless Sensor Networks (WSNs). The basic architecture comprises of two schemes; a key handshaking scheme based on simple linear operations for fast computation and an identity based cryptosystem which does not require any certificate authority. Our analysis shows that, the combined scheme ensures a good level of security and is very much suitable for the energy constrained trend of wireless sensor network.

  • PDF

Clustering Algorithm of Hierarchical Structures in Large-Scale Wireless Sensor and Actuator Networks

  • Quang, Pham Tran Anh;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.473-481
    • /
    • 2015
  • In this study, we propose a clustering algorithm to enhance the performance of wireless sensor and actuator networks (WSANs). In each cluster, a multi-level hierarchical structure can be applied to reduce energy consumption. In addition to the cluster head, some nodes can be selected as intermediate nodes (INs). Each IN manages a subcluster that includes its neighbors. INs aggregate data from members in its subcluster, then send them to the cluster head. The selection of intermediate nodes aiming to optimize energy consumption can be considered high computational complexity mixed-integer linear programming. Therefore, a heuristic lowest energy path searching algorithm is proposed to reduce computational time. Moreover, a channel assignment scheme for subclusters is proposed to minimize interference between neighboring subclusters, thereby increasing aggregated throughput. Simulation results confirm that the proposed scheme can prolong network lifetime in WSANs.

센서 네트워크에서 기계학습을 사용한 잔류 전력 추정 방안 (A Residual Power Estimation Scheme Using Machine Learning in Wireless Sensor Networks)

  • 배시규
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.67-74
    • /
    • 2021
  • As IoT(Internet Of Things) devices like a smart sensor have constrained power sources, a power strategy is critical in WSN(Wireless Sensor Networks). Therefore, it is necessary to figure out the residual power of each sensor node for managing power strategies in WSN, which, however, requires additional data transmission, leading to more power consumption. In this paper, a residual power estimation method was proposed, which uses ignorantly small amount of power consumption in the resource-constrained wireless networks including WSN. A residual power prediction is possible with the least data transmission by using Machine Learning method with some training data in this proposal. The performance of the proposed scheme was evaluated by machine learning method, simulation, and analysis.

Linear network coding in convergecast of wireless sensor networks: friend or foe?

  • Tang, Zhenzhou;Wang, Hongyu;Hu, Qian;Ruan, Xiukai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3056-3074
    • /
    • 2014
  • Convergecast is probably the most common communication style in wireless sensor networks (WSNs). And linear network coding (LNC) is a promising concept to improve throughput or reliability of convergecast. Most of the existing works have mainly focused on exploiting these benefits without considering its potential adverse effect. In this paper, we argue that LNC may not always benefit convergecast. This viewpoint is discussed within four basic scenarios: LNC-aided and none-LNC convergecast schemes with and without automatic repeat request (ARQ) mechanisms. The most concerned performance metrics, including packet collection rate, energy consumption, energy consumption balance and end-to-end delay, are investigated. Theoretical analyses and simulation results show that the way LNC operates, i.e., conscious overhearing and the prerequisite of successfully decoding, could naturally diminish its advantages in convergecast. And LNC-aided convergecast schemes may even be inferior to none-LNC ones when the wireless link delivery ratio is high enough. The conclusion drawn in this paper casts a new light on how to effectively apply LNC to practical WSNs.

Energy Efficient Wireless Sensor Networks Using Linear-Programming Optimization of the Communication Schedule

  • Tabus, Vlad;Moltchanov, Dmitri;Koucheryavy, Yevgeni;Tabus, Ioan;Astola, Jaakko
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.184-197
    • /
    • 2015
  • This paper builds on a recent method, chain routing with even energy consumption (CREEC), for designing a wireless sensor network with chain topology and for scheduling the communication to ensure even average energy consumption in the network. In here a new suboptimal design is proposed and compared with the CREEC design. The chain topology in CREEC is reconfigured after each group of n converge-casts with the goal of making the energy consumption along the new paths between the nodes in the chain as even as possible. The new method described in this paper designs a single near-optimal Hamiltonian circuit, used to obtain multiple chains having only the terminal nodes different at different converge-casts. The advantage of the new scheme is that for the whole life of the network most of the communication takes place between same pairs of nodes, therefore keeping topology reconfigurations at a minimum. The optimal scheduling of the communication between the network and base station in order to maximize network lifetime, given the chosen minimum length circuit, becomes a simple linear programming problem which needs to be solved only once, at the initialization stage. The maximum lifetime obtained when using any combination of chains is shown to be upper bounded by the solution of a suitable linear programming problem. The upper bounds show that the proposed method provides near-optimal solutions for several wireless sensor network parameter sets.

Output-only modal identification approach for time-unsynchronized signals from decentralized wireless sensor network for linear structural systems

  • Park, Jae-Hyung;Kim, Jeong-Tae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • 제7권1호
    • /
    • pp.59-82
    • /
    • 2011
  • In this study, an output-only modal identification approach is proposed for decentralized wireless sensor nodes used for linear structural systems. The following approaches are implemented to achieve the objective. Firstly, an output-only modal identification method is selected for decentralized wireless sensor networks. Secondly, the effect of time-unsynchronization is assessed with respect to the accuracy of modal identification analysis. Time-unsynchronized signals are analytically examined to quantify uncertainties and their corresponding errors in modal identification results. Thirdly, a modified approach using complex mode shapes is proposed to reduce the unsynchronization-induced errors in modal identification. In the new way, complex mode shapes are extracted from unsynchronized signals to deal both with modal amplitudes and with phase angles. Finally, the feasibility of the proposed approach is evaluated from numerical and experimental tests by comparing with the performance of existing approach using real mode shapes.