• Title/Summary/Keyword: linear unbiased estimators

Search Result 27, Processing Time 0.02 seconds

Mean estimation of small areas using penalized spline mixed-model under informative sampling

  • Chytrasari, Angela N.R.;Kartiko, Sri Haryatmi;Danardono, Danardono
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.349-363
    • /
    • 2020
  • Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However, application of the approach in informative sampling in a published article is uncommon. We propose a semiparametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The response variable is explained in terms of mean model, informative sample effect, area random effect and unit error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion probability to account for the informative sample effect. We determine the best and unbiased estimators for coefficient model and derive the restricted maximum likelihood estimators for the variance components. A simulation study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline to approach the function of the inclusion probability provides no significant difference distribution of root mean square error, except for few smaller samples.

Power analysis of testing fixed effects with two way classification (이원혼합모형에서 고정효과 유의성검정에 대한 검정력 분석)

  • 이장택
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.177-187
    • /
    • 1997
  • This article considers the power performance of the tests in unbalanced two way mixed linear models with one fixed factor. The generalized least squares (GLS) F statistic testing no differences among the effects of the levels of the fixed factor is estimated using Henderson's method III, minimum norm quadratic unbiased estimator (MINQUE) with prior guess 1, maximum likelihood (ML) and resticted maximum likelihood (REML). We investigate the power performance of these test statistics. It can be shown, through simulation, that the GLS F statistics using four estimators produce similar type I error rates and power performance.

  • PDF

A Quantitative Model for the Projection of Health Expenditure (의료비 결정요인 분석을 위한 계량적 모형 고안)

  • Kim, Han-Joong;Lee, Young-Doo;Nam, Chung-Mo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.1 s.33
    • /
    • pp.29-36
    • /
    • 1991
  • A multiple regression analysis using ordinary least square (OLS) is frequently used for the projection of health expenditure as well as for the identification of factors affecting health care costs. Data for the analysis often have mixed characteristics of time series and cross section. Parameters as a result of OLS estimation, in this case, are no longer the best linear unbiased estimators (BLUE) because the data do not satisfy basic assumptions of regression analysis. The study theoretically examined statistical problems induced when OLS estimation was applied with the time series cross section data. Then both the OLS regression and time series cross section regression (TSCS regression) were applied to the same empirical da. Finally, the difference in parameters between the two estimations were explained through residual analysis.

  • PDF

An Improved Composite Estimator for Cut-off Sampling

  • Hwang, Hee-Jin;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.5
    • /
    • pp.367-376
    • /
    • 2013
  • Cut-off sampling is widely used for a highly skewed population like a business survey by discarding a part of the population (the take-nothing stratum). In this paper, we suggest a new composite estimator of the take-nothing stratum total obtained by use of the survey results of the take-nothing stratum and a take-some sub-stratum (a part of take-some stratum) for a more accurate estimate of the population total. Small simulation studies are conducted to compare the performances of known estimators and the new composite estimator suggested in this study. In addition, we use briquette consumption survey data for real data analysis.

Shrinkage Small Area Estimation Using a Semiparametric Mixed Model (준모수혼합모형을 이용한 축소소지역추정)

  • Jeong, Seok-Oh;Choo, Manho;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.605-617
    • /
    • 2014
  • Small area estimation is a statistical inference method to overcome large variance due to a small sample size allocated in a small area. A shrinkage estimator obtained by minimizing relative error(RE) instead of MSE has been suggested. The estimator takes advantage of good interpretation when the data range is large. A semiparametric estimator is also studied for small area estimation. In this study, we suggest a semiparametric shrinkage small area estimator and compare small area estimators using labor statistics.

An Analysis for the Structural Variation in the Unemployment Rate and the Test for the Turning Point (실업률 변동구조의 분석과 전환점 진단)

  • Kim, Tae-Ho;Hwang, Sung-Hye;Lee, Young-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.253-269
    • /
    • 2005
  • One of the basic assumptions of the regression models is that the parameter vector does not vary across sample observations. If the parameter vector is not constant for all observations in the sample, the statistical model is changed and the usual least squares estimators do not yield unbiased, consistent and efficient estimates. This study investigates the regression model with some or all parameters vary across partitions of the whole sample data when the model permits different response coefficients during unusual time periods. Since the usual test for overall homogeneity of regressions across partitions of the sample data does not explicitly identify the break points between the partitions, the testing the equality between subsets of coefficients in two or more linear regressions is generalized and combined with the test procedure to search the break point. The method is applied to find the possibility and the turning point of the structural change in the long-run unemployment rate in the usual static framework by using the regression model. The relationships between the variables included in the model are reexamined in the dynamic framework by using Vector Autoregression.

A Digital Phase-locked Loop design based on Minimum Variance Finite Impulse Response Filter with Optimal Horizon Size (최적의 측정값 구간의 길이를 갖는 최소 공분산 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • You, Sung-Hyun;Pae, Dong-Sung;Choi, Hyun-Duck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.591-598
    • /
    • 2021
  • The digital phase-locked loops(DPLL) is a circuit used for phase synchronization and has been generally used in various fields such as communication and circuit fields. State estimators are used to design digital phase-locked loops, and infinite impulse response state estimators such as the well-known Kalman filter have been used. In general, the performance of the infinite impulse response state estimator-based digital phase-locked loop is excellent, but a sudden performance degradation may occur in unexpected situations such as inaccuracy of initial value, model error, and disturbance. In this paper, we propose a minimum variance finite impulse response filter with optimal horizon for designing a new digital phase-locked loop. A numerical method is introduced to obtain the measured value interval length, which is an important parameter of the proposed finite impulse response filter, and to obtain a gain, the covariance matrix of the error is set as a cost function, and a linear matrix inequality is used to minimize it. In order to verify the superiority and robustness of the proposed digital phase-locked loop, a simulation was performed for comparison and analysis with the existing method in a situation where noise information was inaccurate.