• Title/Summary/Keyword: linear type magnetic flux pump

Search Result 7, Processing Time 0.029 seconds

Theoretical Analysis of Charging Current of Linear Type Magnetic Flux Pump According to the Penetrated Position and Moving Speed of Magnetic Flux (침투자속의 위치와 이동속도에 따른 리니어형 자속펌프 충전전류의 이론적 해석)

  • Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • We proposed a linear type magnetic flux pump (LTMFP) as a power supply for superconducting magnet system. In order to explain the operating mechanism of pumping action, the pumping sequence based on penetrated position and moving speed of magnetic flux on the superconducting Nb foil should be understood. In this paper, we induced a theoretical equation for pumping current of LTMFP according to the position of normal spot and corresponding equivalent circuit. In addition, current charging tendencies under the intensity of magnetic flux and frequency were described based on the theoretical pumping equation.

Analysis of Charging Characteristics of Linear Type Magnetic Flux Pump Depended on Traveling Speed of Magnetic Field (리니어형 자속펌프의 이동자장 속도에 따른 충전전류 특성 해석)

  • Chung, Yoon-Do;Kim, Hyun-Ki;Bae, Duck-Kweon;Yoon, Yong-Soo;Jo, Hyun-Chul;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • We already obtained magnetic behavior of superconducting Nb foil of linear type magnetic flux pump (LTMFP) by means of the FEM analysis. As well as, fundamental equations of pumping current were theoretically derived based on the pumping sequences according to the position of normal spot of the moving flux. In this paper, we experimentally investigated pumping performances of LTMFP with a wide range of traveling speed of magnetic field. In order to confirm the numerical and theoretical approaches, we explained the pumping characteristics of LTMFP by use of the calculation sequence of pumping current.

Magnetic Field Distribution Analysis of Superconducting Niobium Foil of Linear Type Magnetic Flux Pump using Simulation (시뮬레이션을 이용한 리니어형 자속 플럭스 펌프에서의 초전도 니오븀 박막의 자장분포 해석)

  • Lee, Eung-Ro;Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.60-64
    • /
    • 2009
  • We investigated an operating characteristic of linear-type magnetic flux pump (LTMFP) as a current compensator under the various conditions. In order to explain the mechanism of the LTMFP, the magnetic behavior of superconducting Nb foil according to pumping actions should be understood. In this paper, the magnetic field analysis of superconducting Nb foil installed in LTMFP has been performed based on the three-dimensional finite element method (3D FEM). Through the simulation analysis, the normal spot region on the superconducting Nb foil is found to be enhanced swiftly over about 20 Hz. The simulated finding agreed with an analytical estimation based on the phenomenon of magnetic diffusion.

Pumping-up Current Characteristics of Linear Type Magnetic Flux Pump

  • Chung, Yoondo;Muta, Itsuya;Hoshino, Tsutomu;Nakamura, Taketsune;Ko, Taekuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2004
  • The linear type flux pump aims to compensate a little bit decremental persistent current of the HTS magnet in NMR and MRI spectrometers. The flux pump mainly consists of DC bias coil, 3-phase AC coil and Nb foil. The persistent current in closed superconductive circuit can be easily adjusted by the 3-phase AC current, its frequency and the DC bias current. In the experiment, it has been investigated that the flux pump can effectively charge the current in the load coil of 543 mH for various frequencies in 18 minutes under the DC bias of 10 A and the AC of 5 $A_{rms}$. The maximum magnitudes of pumping current and load magnet voltage are 0.72 A/min and 20 ㎷, respectively. Based on simulation results by the FEM are proved to nearly agree with experimental ones.

Operating characteristics of linear type magnetic flux pump (리니어타잎 초전도 전원장치의 동작특성)

  • Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.665-666
    • /
    • 2008
  • Inserted HTS (high temperature superconducting) coil is promisingly expected as a solution for achievement of higher fields such as GHz scale NMR magnet. However, HTS magnet causes persistent current decay in the persistent current mode and this decay should be compensated in order to keep stable magnetic field. As a solution for the decay in the HTS magnets, we proposed a new type superconducting power supply, i.e., linear type magnetic flux pump (LTMFP). The LTMFP mainly consists of DC bias coil, 3-phase AC coil and superconducting Nb foil. The compensating current in closed superconductive circuit can be easily controlled by the intensity of 3-phase AC current and its frequency. In this study, it has been investigated that the flux pump can effectively charge the current for various frequencies according to the different load magnets.

  • PDF

Nonlinear Characteristic Analysis of Charging Current for Linear Type Magnetic Flux Pump Using RBFNN (RBF 뉴럴네트워크를 이용한 리니어형 초전도 전원장치의 비선형적 충전전류특성 해석)

  • Chung, Yoon-Do;Park, Ho-Sung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.140-145
    • /
    • 2010
  • In this work, to theoretically analyze the nonlinear charging characteristic, a Radial Basis Function Neural Network (RBFNN) is adopted. Based on the RBFNN, an charging characteristic tendency of a Linear Type Magnetic Flux Pump (LTMFP) is analyzed. In the paper, we developed the LTMFP that generates stable and controllable charging current and also experimentally investigated its charging characteristic in the cryogenic system. From these experimental results, the charging current of the LTMFP was also found to be frequency dependent with nonlinear quality due to the nonlinear magnetic behaviour of superconducting Nb foil. On the whole, in the case of essentially cryogenic experiment, since cooling costs loomed large in the cryogenic environment, it is difficult to carry out various experiments. Consequentially, in this paper, we estimated the nonlinear characteristic of charging current as well as realized the intelligent model via the design of RBFNN based on the experimental data. In this paper, we view RBF neural networks as predominantly data driven constructs whose processing is based upon an effective usage of experimental data through a prudent process of Fuzzy C-Means clustering method. Also, the receptive fields of the proposed RBF neural network are formed by the FCM clustering.

Operating analysis of linear type magnetic flux pump

  • Chung, Y.D.;Yang, S.E.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.20-24
    • /
    • 2009
  • In order to explain the operating characteristics of LTMFP in a wide range of driving frequency, an analytical equation that takes into account the detailed behavior of the normal spot is necessary. In this paper, based on the phenomenon of magnetic diffusion of the superconductor we modified the theoretical equations for pumping action in LTMFP. The modified equations explained well the pumping actions under the different load magnets. These results are important to explain the pumping tendency of the LTMFP according to driving frequency.