• Title/Summary/Keyword: linear time-invariant system

Search Result 199, Processing Time 0.031 seconds

Data-based Control for Linear Time-invariant Discrete-time Systems

  • Park, U. S.;Ikeda, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1993-1998
    • /
    • 2004
  • This paper proposes a new framework for control system design, called the data-based control approach or data space approach, in which the input and output data of a dynamical system is directly and solely used to analyze or design a control system without the employment of any mathematical models like transfer functions, state space equations, and kernel representations. Since, in this approach, most of the analysis and design processes are carried out in the domain of the data space, we introduce some notions of geometrical objects, e.g., the openloop and closed-loop data spaces, which serve as the system representations in the data space. In addition, we establish a relationship between the open-loop and closed-loop data spaces that the closed-loop data space is contained in the open-loop data space as one of its subspaces. By using this relationship, we can derive the data-based stabilization condition for a linear time-invariant discrete-time system, which leads to a linear matrix inequality with a rank constraint.

  • PDF

Performance Analysis of Multirate LQG Control (멀티레이트 LQG 제어 기법의 성능 비교 분석)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one period, the time-varying system equation can be constructed into the time-invariant equation. The two multirate formulations have some trade-offs in the simplicity to construct the controller, the control performance. It is good issue to determine the suitable formulation in consideration of performance of them. In this paper, the two categories of multirate formulations will be compared in terms of the linear quadratic (LQ) cost function. The results are used to select the multirate formulation and the sampling rates suitable to the desired control performance.

  • PDF

An Analytical Design Of A Feedback Regulator With Vector Input In A Discrete Linear Time Invariant Systems (벡터 인력을 갖는 이산선형시 불변시스템의 피이드백 조정기의 해석적 설계)

  • 고명삼;양해원
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.69-72
    • /
    • 1974
  • This paper deals with an analytical design of a feedback regulator with vector input is discrete linear time-invariant systems. We have derived some relations such that the eigenvalues of a system plant with vector input under the time-optimal control strategy can be arbitrarily changed by the characteristics of the minor loop compensator which is indroduced in the feedback path.

  • PDF

A Study on The State Estimation of The Time-Invariant Linear Systems via The Improved Parameter Estimation Method for The Block Pulse Coefficients (개선된 블록 펄스 계수 추정 기법을 이용한 선형 시불변계의 상태 추정에 관한 연구)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Chung, Je-Wook;Sim, Jae-Seon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.137-143
    • /
    • 2002
  • Because Block Pulse functions are used in a variety of fields such as the analysis and controller design of systems, it is necessary to find the more exact value of the Block Pulse series coefficients. This paper presents a method for the state estimation of the time-invariant linear systems via the improved estimation method for the Block Pulse coefficients by using the Simpson's rule. The proposed method using the Simpson's rule improve the accuracy of the Block Pulse coefficients.

Multi-Time Scale Separations and Optimal Control Problems of Multi-Parameter Singular Perturbation Systems (여러 매개상수 특이접동계에서의 여러 시간스케일 분리와 최적제어 문제)

  • Kim, Sam-Soo;Hong, Jae-Keun;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 1987
  • The hierarchical approach method is proposed to sperate each different time scale sub-systems from linear time invariant multi-parameter singular perturbation systems. By means of this proposal, the original multi-parameter singular perturbation systems is completely separated into independent subsystems with each different time scale. It is also investigated that the controllability of the system is invariant. And this paper applies singular perturbation methods to the minimum control effort problem for linear time invariant systems with constrained controls. Also near-optimum control theory, which is based on dividing the total time interval with the time scales respectively, is proposed. As a result, the time scale separation method is show to be particularly useful in a near optimum design which can be otained through a decentralized control structure.

  • PDF

SIMULTANEOUS FAULT DETECTION AND CONTROL OF LINEAR TIME-INVARIANT SYSTEM VIA DISTURBANCE OBSERVER-BASED CONTROL APPROACH

  • PANG, GUOCHEN;JIAO, YU;ZHANG, HONGZI;CHEN, XIANGYONG;ZHANG, ANCAI;QIU, JIANLONG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.47-59
    • /
    • 2022
  • This paper concerns the problem of simultaneous fault detection and disturbance reject control(SFDDRC) for a class of linear time-invariant system. In the framework of fault detection, residual generators are required to be robust to disturbances existing in the system. Different from most of the existing simultaneous fault and control(SFDC) methods, SFDDRC rejects the influences of disturbances on residual generators by disturbance observer-based control(DOBC). This not only effectively improves the accuracy of fault detection, but also solves the problem that most of the existing SFDC methods require that the disturbance must be bounded. Finally, a numerical example is given to verify the validity of the method.

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

Stabilizing Controller Design for Linear Time-Varying Systems Using Ackerman-like Formula

  • Choi, Jae-Weon;Lee, Ho-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.1-125
    • /
    • 2001
  • This paper deals with the eigenvalue assignment technique for linear time-varying systems to achieve feedback stabilization. For this, we introduce the novel eigenvalue concepts. Then, we propose the Ackerman-like formula for linear time-varying systems. It is believed that this technique is the generalized version of the Ackerman formula forlinear time-invariant systems. The advantages of the proposed technique are that it does not require the transformation of the original system into the phase-variable form nor the computation of eigenvalues of the original system.

  • PDF

A Suggestion of Fuzzy Estimation Technique for Uncertainty Estimation of Linear Time Invariant System Based on Kalman Filter

  • Kim, Jong Hwa;Ha, Yun Su;Lim, Jae Kwon;Seo, Soo Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.919-926
    • /
    • 2012
  • In order to control a LTI(Linear Time Invariant) system subjected to system noise and measurement noise, first of all, it is necessary to estimate the state of system with reliability. Kalman filtering technique has been widely used to estimate the state of the stochastic LTI system with stationary noise characteristics because of its estimation ability versus algorithm simplicity. However, it often fails to estimate the state of the LTI system of which system parameter uncertainty exists partly and/or input uncertainty exists. In this paper, a new estimation technique based on Kalman filter is suggested for stochastic LTI system under parameter uncertainty and/or input uncertainty. A fuzzy estimation algorithm against uncertainties is introduced so as to compensate the state estimate filtered by Kalman filter. In order to verify the state estimation performance of the suggested technique, several simulations are accomplished.

Adaptive control of overmodeled linear time-invariant discrete systems (과모델된 선형 시불변 이산 시간 시스템의 적응 제어법칙)

  • Yang, Hyun-Suk;Lee, Ho-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 1996
  • This paper presents a parameter adaptive control law that stabilizes and asymptotically regulates any single-input, linear time-invariant, controllable and observable, discrete-time system when only the upper bounds on the order of the system is given. The algorithm presented in this paper comprises basically a nonlinear state feedback law which is represented by functions of the state vector in the controllable subspace of the model, an adaptive identifier of plant parameters which uses inputs and outputs of a certain length, and an adaptive law for feedback gain adjustment. A new psedu-inverse algorithm is used for the adaptive feedback gain adjustment rather than a least-square algorithm. The proposed feedback law results in not only uniform boundedness of the state vector to zero. The superiority of the proposed algorithm over other algorithms is shown through some examples.

  • PDF