• Title/Summary/Keyword: linear system model

Search Result 3,084, Processing Time 0.034 seconds

Design of Longitudinal Auto-landing Guidance and Control System Using Linear Controller-based Adaptive Neural Network

  • Choi, Si-Young;Ha, Cheol-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1624-1627
    • /
    • 2005
  • We proposed a design technique for auto-landing guidance and control system. This technique utilizes linear controller and neural network. Main features of this technique is to use conventional linear controller and compensate for the error coming from the model uncertainties and/or reference model mismatch. In this study, the multi-perceptron neural network with single hidden layer is adopted to compensate for the errors. Glide-slope capture logic for auto-landing guidance and control system is designed in this technique. From the simulation results, it is observed that the responses of velocity and pitch angle to commands are fairly good, which are directly related to control inputs of throttle and elevator, respectively.

  • PDF

Modelling and Analysis of a Vibrating System Incorporating a Viscoelastic Damper (비선형 점탄성 댐퍼를 포함한 진동시스템의 모델링 및 해석)

  • Yang, Seong-Young;Chang, Seo-Il;Kim, Sang-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.449-454
    • /
    • 2000
  • A three-parameter model of viscoelastic damper, which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by three-dimensional non-linear dynamical system of equations. The harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time integration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

T-S Fuzzy Modeling of Synchronous Generator in a Power System (전력계통 동기발전기의 T-S Fuzzy 모델링)

  • Lee, Hee-Jin;Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1642-1651
    • /
    • 2008
  • The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.

Dynamic Analysis of a Geometrical Non-linear Plate (기하학적 비선형성을 갖는 평판의 동특성 해석)

  • 임재훈;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.498-503
    • /
    • 2003
  • Dynamic analysis of a plate with non-linearity due to large deformation is performed in the study. There have been many researches about the non-linear dynamic behavior of plates examining by means of theoretical or numerical analyses. But it is important how exactly model the actual system. In this respect, the Continuous-Time system identification technique is used to generate non-linear models, for stiffness and damping terms, to explain the observed behaviors with single mode assumptions for the simplicity after comparing the experimental results with the numerical results of a linear plate model.

  • PDF

Analysis of the Dynamic Characteristics of the Underwater Discharge System using a Linear Pump (선형펌프 방식 수중발사 시스템의 동특성 해석)

  • Park, In-Ki;Jung, Chan-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.11-17
    • /
    • 2005
  • In this paper, the mathematical model of the underwater discharge system using a linear pump is derived and the suitable opening pattern of a flow control valve which satisfies the discharge performance requirements is obtained through the underwater discharge simulations. The simulation results show that the dynamic characteristics of a projectile are greatly affected by the opening pattern of the flow control valve, however, hardly by the diving depth. It is anticipated that the simulation model can be used to derive the design parameters and analyze the performance of the designed underwater discharge system using a linear pump.

NURBS Post-Processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1227-1233
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good fur precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied and the machining result of NURBS tool path was compared with that of linear tool path. The N-post including both a post-processing and a virtual machining software was developed. The N-Post transforms linear tool path to NURBS tool path and quickly shades a machined product on OpenGL view, while comparing a machined surface with a original CAD one. A virtulal machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error and machining time of post-processed NURBS tool path were investigated.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Comparison of Data-based Real-Time Flood Forecasting Model (자료기반 실시간 홍수예측 모형의 비교·검토)

  • Choi, Hyun Gu;Han, Kun Yeun;Roh, Hong Sik;Park, Se Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1809-1827
    • /
    • 2013
  • Recently we need to take various measures to prepare for extreme flood that occur due to climate change. It is important that establish flood forecasting system to prepare flood over non-structure measures. The objective of this study is to develop superior real-time flood forecasting model by comparing the Neuro-fuzzy model and the multiple linear regression model. The Neuro-fuzzy model and the multiple linear regression model are established using same input data and applied for various flood events in Nakdong basin. The results show that the Neuro-fuzzy model can carry out flood forecasting results more accurately than the multiple linear regression model. This study can contribute to the establishment of a high accuracy flood information system that secure lead time in Nakdong basin.

Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities (견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가)

  • Jung, Yu-Chul;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

Neural Networks for Solving Linear Programming Problems and Linear Systems (선형계획 문제의 해를 구하는 신경회로)

  • Chang, S.H.;Kang, S.G.;Nam, B.H.;Lee, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.221-223
    • /
    • 1993
  • The Hopfield model is defined as an adaptive dynamic system. In this paper we propose a modified neural network which is capable of solving linear programming problems and a set of linear equations. The model is directly implemented from the given system, and solves the problem without calculating the inverse of the matrices. We get the better stability results by the addition of scaling property and by using the nonlinearities in the linear programming neural networks.

  • PDF