• 제목/요약/키워드: linear shrinkage

검색결과 207건 처리시간 0.025초

치과용 지르코니아 코어 가공후의 잔여물을 활용하여 주입성형법으로 제조한 소결체의 특성 (The Properties of Sintered Body by Using the Slip Casting Process with Remained Dental Zirconia Block after Machining)

  • 김상수;이동윤;서정일;배원태
    • 대한치과기공학회지
    • /
    • 제34권2호
    • /
    • pp.75-81
    • /
    • 2012
  • Purpose: All ceramic crown, made from zirconia instead of metal for core material, is recognized the best esthetical prosthesis. Recently, high-priced zirconia blocks and expensive CAD/CAM machines come into use for making zirconia core. In this study, slip casting process is adapted to evaluate the possibility of the recycling the remained parts of zirconia block after machining. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Passed powders were ball milled under various conditions to obtain the optimum zirconia slip for casting. Solid casting method was used for casting the specimens with plaster mold. Formed specimens were dried and biscuit fired at $1,000^{\circ}C$ for 1 hour. Biscuit fired specimens were finished with exact shape of square pillar. Finished specimens were fired from $1,200^{\circ}C$ to $1,550^{\circ}C$ at $50^{\circ}C$ intervals for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM. Results: Above examinations indicated that the optimum firing temperture was $1,500^{\circ}C$, and when fired at this temperature for 1 hour, apparent porosity was 0% and flexural strength was 680MPa. SEM photomicrographs showed uniform 200~300nm grain size, which is equal with microcture of sintered commercial zirconia block. when compare 24% linear shrinkage of cast specimen with 20% linear shrinkage of CAD/CAM machined block, it was estimated that the size controlling of cast core was not so difficult. Conclusion: According to the all of this experimental results, the cast zirconia core produced from the remained parts of zirconia block was possible to use for all ceramic denture.

고강도 콘크리트의 자기수축 변형에 대한 실험적 연구 (An Experimental study on Autogenous Shrinkage strain of High-Strength Concrete)

  • 박신일;최진영;전철송;임병호;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.61-66
    • /
    • 2002
  • The autogenous shrinkage is a important phenomenon of high performance concrete since it may decrease the concrete member's durability by induce crack at early age. So the autogenous shrinkage behavior of high strength concrete was studied according to different replacement ratio of silica fume and fly ash. A linear measurement technique which was introduced by the JCI autogenous commitee was used.

  • PDF

콘크리트 수분관련 수축에 관한 다중물리모델 (Multi-physics Modelling of Moisture Related Shrinkage in Concrete)

  • 이창수;박종혁
    • 한국방재학회 논문집
    • /
    • 제9권2호
    • /
    • pp.1-9
    • /
    • 2009
  • 물-결합재비 0.4이하의 고성능 콘크리트 수축 변형을 파악하기 위해 전체 수축을 수분의 외부이동에 의한 건조수축과 수분의 내부소모에 의한 자기수축으로 분리한 후, 자기건조에 의한 상대습도 변화와 변형률의 관계를 묘사하기 위하여 계면역학적 접근법에 의한 습도-변형률 관계를 설정하였다. 이에 대한 검증을 위해 자기수축 시험체에서의 습도-수축 측정을 수행하였으며, 기존 연구 모델인 Tazawa, CEB-FIP 모델에 비하여 측정값과 가장 유사한 결과를 나타내어 본 연구에서의 자기수축모델은 자기건조에 따른 자기수축은 선형성을 나타내는 수분의 외부이동에 의한 수축과는 달리 지수적 관계를 갖는 특성과 초기재령에서의 급속한 자기수축 발현 특성을 적절히 묘사하고 있음을 알 수 있었다. 이 후 본 연구의 수분이동-수축 모델을 반영하여 온도, 수분이동, 변형률 해석의 다중물리 모델 해석과 모형시험체 측정을 수행한 결과 매우 유사한 값을 나타내어 본 연구를 통해 측정된 수분의 내부소모에 의한 습도와 수축변형률을 고려한 다중물리모델은 타당할 것으로 판단된다.

Shrinkage Model Selection for Portfolio Optimization on Vietnam Stock Market

  • NGUYEN, Nhat;NGUYEN, Trung;TRAN, Tuan;MAI, An
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권9호
    • /
    • pp.135-145
    • /
    • 2020
  • This paper provides the practical application of a linear shrinkage framework on Vietnam stock market. The cumulative data points observed in this analysis are 468 weeks from January 2011 to December 2019. All the companies listed on Ho Chi Minh City Stock Exchange (HOSE), except the companies under two years period from Initial Public Offering (IPO), are considered. The cumulative number of stocks picked is therefore 350 companies. The VNINDEX, which is the Vietnam Stock Index, is used as a reference index for shrinking to a single-index model. The empirical results show that the shrinkage of covariance matrix for portfolio optimization gives the promising results for the investors on Vietnam stock market. The shrinkage method helps the investors to produce the optimal portfolio in the sense of having higher profit with lower levels of risk compared to the portfolio of the traditional SCM method. Moreover, the portfolio turnover of shrinkage method is always kept at low magnitudes, and this makes the shrinkage portfolios save much transaction costs and reduce the liquidity risks in the trading process. In addition, the ability of shrinkage method in making profit is once again confirmed by the Alpha coefficient that achieves a high positive value.

준모수혼합모형을 이용한 축소소지역추정 (Shrinkage Small Area Estimation Using a Semiparametric Mixed Model)

  • 정석오;추만호;신기일
    • 응용통계연구
    • /
    • 제27권4호
    • /
    • pp.605-617
    • /
    • 2014
  • 소지역추정은 작은 규모의 지역 또는 도메인에 작은 크기의 표본이 배정되어 추정의 정도가 좋지 않은 경우에 이를 극복하는 통계적 기법이다. 소지역추정에 흔히 사용되고 있는 모형기반 추정량은 MSE를 기초로 얻어지나 최근 상대오차를 이용한 소지역추정법도 연구되고 있다. 본 논문에서는 상대오차를 최소로 하는 소지역 추정량의 준모수적 접근법에 관하여 연구하였다. 즉 준모수혼합모형을 이용한 축소소지역추정량을 새롭게 제안하였다. 또한 Lee(1995)에서 제안된 모의실험 자료를 이용한 모의실험과 매월노동통계 자료를 이용한 사례연구를 통하여 기존의 추정량과 제안된 추정량의 우수성을 비교하였다.

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • 제19권4호
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

Experimental study on deformation of concrete for shotcrete use in high geothermal tunnel environments

  • Cui, Shengai;Liu, Pin;Wang, Xuewei;Cao, Yibin;Ye, Yuezhong
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.443-449
    • /
    • 2017
  • Taking high geothermal tunnels as background, the deformation of concrete for shotcrete use was studied by simulating hot-humid and hot-dry environments in a laboratory. The research is made up by two parts, one is the influence of two kinds of high geothermal environments on the deformation of shotcrete, and the other is the shrinkage inhibited effect of fiber materials (steel fibers, polypropylene fibers, and the mixture of both) on the concrete in hot-dry environments. The research results show that: (1) in hot and humid environments, wet expansion and thermal expansion happened on concrete, but the deformation is smooth throughout the whole curing age. (2) In hot and dry environments, the concrete suffers from shrinkage. The deformation obeys linear relationship with the natural logarithm of curing age in the first 28 days, and it becomes stable after the $28^{th}$ day. (3) The shrinkage of concrete in a hot and dry environment can be inhibited by adding fiber materials especially steel fibers, and it also obeys linear relationship with the natural logarithm of curing age before it becomes stable. However, compared with no-fiber condition, it takes 14 days, half of 28 days, to make the shrinkage become stable, and the shrinkage ratio of concrete at 180-day age decreases by 63.2% as well. (4) According to submicroscopic and microscopic analysis, there is great bond strength at the interface between steel fiber and concrete. The fiber meshes are formed in concrete by disorderly distributed fibers, which not only can effectively restrain the shrinkage, but also prevent the micro and macro cracks from extending.

주입성형한 지르코니아 소결체의 기계적 성질에 미치는 알루미나 첨가의 영향 (Effects of the Addition of Alumina on the Mechanical Properties of Cast Zirconia Sintered Body)

  • 이동윤;조준호;서정일;배원태
    • 대한치과기공학회지
    • /
    • 제34권2호
    • /
    • pp.113-119
    • /
    • 2012
  • Purpose: Zirconia blocks for all ceramic dentures are divided into two groups. One is pre-heated block and the other is binder added block. In this study, the possibility of recycling the remained parts of binder added block after CAD/CAM machining with slip casting process was investigated. Methods: Owing to the binder added block contain large amount of organic matter, Binder burn-out was must be carried out before ball milling for preparing the casting slip. Binder burn-out was accomplished at $600^{\circ}C$ for 10 hours. Ball milling was performed with 5mm zirconia ball and 60mm polyethylene bottle. From 0% to 5% at 1% intervals of alumina was added to zirconia powder for preparing slip. Solid casting was achieved with plaster mold. Cast bodies were dried and sintered at $1,500^{\circ}C$ for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM, EDS and XRD analysis were executed. Results: Optimum slips for casting was prepared with 300g ball, 100g powder, and 180g distilled water. Cast body without alumina showed 26% of linear shrinkage, 6.07 of apparent density, and 470MPa of three point bend strength. On the other hand, as received zirconia block, which was sintered at the same conditions, showed 23% of linear shrinkage, 6.10 of apparent density, and 680MPa of three point bend strength. When 3% of alumina was added to zirconia, sintered body showed 23% of linear shrinkage, 6.10 of apparent density, and 780MPa of three point bend strength. SEM photomicrographs and EDS analysis showed alumina particles uniformly dispersed in zirconia matrix, and XRD analysis showed no phase transformation of tetragonal zirconia particles was occurred when alumina was added. Conclusion: According to the all of this experimental results, 3% of alumina added cast zirconia body showed excellent mechanical properties more than as received binder containing zirconia block.

Long-term deflection prediction in steel-concrete composite beams

  • Lou, Tiejiong;Wu, Sishun;Karavasilis, Theodore L.;Chen, Bo
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.21-33
    • /
    • 2021
  • This paper aims to improve the current state-of-the-art in long-term deflection prediction in steel-concrete composite beams. The efficiency of a time-dependent finite element model based on linear creep theory is verified with available experimental data. A parametric numerical study is then carried out, which focuses on the effects of concrete creep and/or shrinkage, ultimate shrinkage strain and reinforcing bars in the slab. The study shows that the long-term deformations in composite beams are dominated by concrete shrinkage and that a higher area of reinforcing bars leads to lower long-term deformations and steel stresses. The AISC model appears to overestimate the shrinkage-induced deflection. A modified ACI equation is proposed to quantify time-dependent deflections in composite beams. In particular, a modified reduction factor reflecting the influence of reinforcing bars and a coefficient reflecting the influence of ultimate shrinkage are introduced in the proposed equation. The long-term deflections predicted by this equation and the results of extensive numerical analyses are found to be in good agreement.

포졸란 재료를 사용한 재생골재 콘크리트의 건조수축 및 크리프 (Shrinkage and Creep of Recycled Aggregate Concrete Using Pozzolanic Materials)

  • 문대중;임남웅;김양배
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.637-642
    • /
    • 2002
  • In this study, the experiments of recycled aggregate concrete with fly ash and special blended slag powder or diatom calcined at 650$\circ$ were performed on compressive strength, shrinkage and creep. The compressive strength of concrete with recycled aggregate and pozzolanic materials were higher than that of concrete with crushed stone and OPC. On the other hand, the shrinkage and creep of concrete with recycled aggregate and pozzolanic materials was smaller than that of concrete with crushed stone and OPC. Futhermore, the shrinkage and creep of recycled aggregate concrete with fly ash and special blended slag powder was a little decreased that of recycled aggregate concrete with fly ash and diatom. Relationship between compressive strength and creep coefficient was shown to the linear relation like as $\sigma$$_{c}$= -30CF+404.4.

  • PDF