• Title/Summary/Keyword: linear series

Search Result 1,285, Processing Time 0.026 seconds

A Time-Series Study of Ambient Air Pollution in Relation to Daily Mortality in Seoul, 1998∼2001 (서울시 대기오염과 일별 사망의 상관성에 관한 시계열적 연구 (1998∼2001년))

  • Cho, Yong-Sung;Lee, Jong-Tae;Kim, Yoon-Sin;Hong, Seung-Cheol;Kim, Ho;Ha, Eun-Hee;Park, Hye-Sook;Lee, Bo-Eun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.625-637
    • /
    • 2003
  • This study was performed to examine the relationship between air pollution exposure and mortality in Seoul for the years of 1998∼2001. Daily counts of death were analyzed by general additive Poisson model, with adjustment for effects of seasonal trend, air temperature, humidity, and day of the week as confounders in a nonparametric approach. Daily death counts were associated with CO (current day),O$_3$ (current day), PM$_{10}$ (current day), NO$_2$ (1 day before), SO$_2$ (1 day before). Increase of 41.71 $\mu\textrm{g}$/㎥ (interquartile range) in PM$_{10}$ was associated with 1.3% (95% CI = 0.7∼1.9%) increase in the daily number of death. $O_3$ concentrations resulted in an increased risk of 1.3% for 23.86 ppb in all-aged mortality [RR = 1.013 (1.004-1.023)1. This effect was greater in children (less than 15 aged) and elderly (more than 65 aged). After ozone level exceeds 25 ppb, the dose-response relationship between mortality and ozone was almost linear. We concluded that Seoul had 1∼5% increase in mortality in association with IQR (interquartile range) in air pollutants. Daily variations in air pollution within the range currently occurring in Seoul might have an adverse effect on daily mortality. These findings also support the hypothesis that air pollution, at levels below the current ambient air quality standards of Korea, is harmful to sensitive subjects, such as children or elderly.rly.

Gravity modeling and application to the gravity referenced navigation (중력모델링과 중력참조항법에의 적용)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Yu, Myeong-Jong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.543-550
    • /
    • 2011
  • The gravity anomaly is a basic geophysical data applied in various fields such as geophysics, geodesy and national defense. In general, the gravity anomaly is used through a interpolation process based on the constructed database. The gravity variation, however, is appeared in various shapes depending on the topography and the density of the underground structures. Therefore, the interpolation could lead to a large differences if the gravity fields do not satisfy the assumptions on the signal behavior like linear or a certain degree polynomials. Furthermore, the interpolation does not reflect the physical characteristics of the gravity such as the harmonic condition. In this study, the gravity modeling using the plane Fourier series and radial basis functions are performed to overcome the problems in the usual interpolation. The results of the modeling is analyzed for the case of the gravity referenced navigation focused on the signal characteristics. Based on the study, it was found that the results from modeling are not much different to that from the interpolation in a smoothly varied area. In case of the highly varied area, however, a large differences are appeared among the three methods. Especially, the Fourier series shows the most smooth variations in the modeled gravity values while the highest variations appeared in the interpolation. Applying to the gravity referenced navigation, it was found that the modeling is more effective in calculation cost. It is considered that the results from this study provides a basis on effective modeling of the gravity fields in terms of the signal characteristics and resolution for various application fields.

A study on conceptual evaluation of structural stability of room-and-pillar underground space (주방식 지하공간의 구조적 안정성 평가개념 정립에 관한 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.585-597
    • /
    • 2013
  • In this study, in order to evaluate stability of the room-and-pillar underground structure, a series of preliminary numerical analyses were performed. Design concept and procedure of an underground structure for obtaining a space are proposed, which should be different from structural design for the room-and-pillar in mine. With assumed material properties, a series of numerical analyses were performed by varying size ratios of room and pillar and then the failure modes and location at yielding initiation were investigated. From the results, relationship between the ratio of pillar width to the roof span (w/s) and overburden pressure at failure initiation shows a relatively linear relation, and the effect of w/s on structural stability is much more critical than the ratio of pillar width and height (w/H) which is a crucial parameter in design of the room-and-pillar mining. It means that roof tensile failure and shear failure at shoulder and pillar are necessary to be considered together for confirming overall structural stability of the room-and-pillar structure, rather than considering the pillar stability only in mining. Failure modes and location at failure initiation were varied with respect to the ratio of room and pillar widths. Therefore, it is necessary to simultaneously consider stability of both roof span and pillar for design of underground structure by the room-and-pillar method.

An Empirical Test of the Dynamic Optimality Condition for Exhaustible Resources -An Input Distance Function- (투입물거리함수를 통한 고갈자원의 동태적 최적이용 여부 검증)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.673-692
    • /
    • 2006
  • In order to test for the dynamic optimality condition for the use of nonrenewable resource, it is necessary to estimate the shadow value of the resource in situ. In the previous literatures, a time series for in situ price has been derived either as the difference between marginal revenue and marginal cost or by differentiating with respect to the quantity of ore extracted the restricted cost function in which the quantity of ore is quasi-fixed. However, not only inconsistent estimates are likely to be generated due to the nonmalleability of capital, but the estimate of marginal revenue will be affected by market power. Since firms will likely fail to minimize the cost of the reproducible inputs subject to market prices under realistic circumstances where imperfect factor markets, strikes, or government regulations are present, the shadow in situ values obtained by estimating the restricted cost function can be biased. This paper provides a valid methodology for checking the dynamic optimality condition for a nonrenewable resource by using the input distance function. Our methodology has some advantages over previous ones: only data on quantities of inputs and outputs are required; nor is the maintained hypothesis of cost minimization required; adoption of linear programming enables us to circumvent autocorrelated errors problem caused by use of time series or panel data. The dynamic optimality condition for domestic coal mining does not hold for constant discount rates ranging from 2 to 20 percent over the period 1970~1993. The dynamic optimality condition also does not hold for variable rates ranging from fourth to four times the real interest rate.

  • PDF

Retention Behaviors of Natural Gas Components on a Single Column by Gas Chromatography (기체 크로마토그래피에 의한 단일 컬럼상에서 천연가스 성분의 머무름 거동)

  • Choi, Yong-Wook;Choe, Kun-Hyung;Lee, Dai-Woon
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.329-338
    • /
    • 1994
  • The retention behaviors of natural gas components were studied on a single column by gas chromatography. The dead time, $t_0$ was obtained by using extrapolation of homologous series to determine capacity factors. The plots of retention data for homologous series and carbon number at different temperatures were shown to converge into a single point, which point was determined as a dead time. The results of the effect of temperature on the column efficiency for n-butane exhibited the plate number, N incerased with temperature, but the resolution among the fast eluted components decreased. The adsorption enthalpy (${\Delta}H^0{_{ads}}$) for each component on 28% DC 200 stationary phase was determined, and in order to investigate the retention behaviors of natural gas components the regression analysis of log $t_R$, log k' and log ${\alpha}$ vs. van der Waals volume(Vw), molecular connectivity index(X) and hydrophobic fragmental constant(f) were carred out. Good correlation was found between log k' vs. Vw, and log k' vs. f. The correlations between the physical properties of natural gas and the physical parameters were investigated by the linear regression analysis. The relationships between Vw vs. molecular weight and heating value(${\Delta}H_{comb}$), X vs. boiling point, and f vs. molecular weight, boiling point and heating value exhibited the high correlation coefficient more than 0.99. Using the regression equation between the heating value of natural gas and Vw the predicted heating values from $C_6$ to $C_{10}$ showed good agreement with those reported in the literature within 0.2% relative error.

  • PDF

Incremental Regression based on a Sliding Window for Stream Data Prediction (스트림 데이타 예측을 위한 슬라이딩 윈도우 기반 점진적 회귀분석)

  • Kim, Sung-Hyun;Jin, Long;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.483-492
    • /
    • 2007
  • Time series of conventional prediction techniques uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to stream data, the rate of prediction accuracy will be decreased. This paper proposes an stream data prediction technique using sliding window and regression. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of stream data prediction experiment are performed by the proposed technique IMQR(Incremental Multiple Quadratic Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

Kinetic Study on Nucleophilic Displacement Reactions of Y-Substituted-Phenyl 2-Methylbenzoates with Cyclic Secondary Amines in Acetonitrile: Effects of Modification of 2-MeO in Benzoyl Moiety by 2-Me on Reactivity and Reaction Mechanism

  • Lee, Ji-Youn;Kim, Mi-Yeon;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3795-3799
    • /
    • 2013
  • The second-order rate constants ($k_N$) have been measured spectrophotometrically for nucleophilic substitution reactions of Y-substituted-phenyl 2-methylbenzoates (6a-e) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. Comparison of the $k_N$ values for the reactions of 4-nitrophenyl 2-methylbenzoate (6d) with those reported previously for the corresponding reactions of 4-nitrophenyl 2-methoxybenzoate (5) reveals that 6d is significantly less reactive than 5, indicating that modification of 2-MeO in the benzoyl moiety of 5 by 2-Me (i.e., $5{\rightarrow}6d$) causes a significant decrease in reactivity. This supports our previous report that aminolysis of 5 proceeds through a six-membered cyclic intermediate, which is highly stabilized through intramolecular H-bonding interactions. The Br${\o}$nsted-type plot for the reactions of 6d with a series of cyclic secondary amines is linear with ${\beta}_{nuc}=0.71$, which appears to be a lower limit of ${\beta}_{nuc}$ for a stepwise mechanism with breakdown of an intermediate ($T^{\pm}$) being rate-determining step (RDS). The Br${\o}$nsted-type plot for the reactions of 6a-e with piperidine is curved, i.e., the slope of Br${\o}$nsted-type plot (${\beta}_{lg}$) decreases from -1.05 to -0.41 as the leaving-group basicity decreases. The nonlinear Br${\o}$nsted-type plot has been taken as evidence for a stepwise mechanism with a change in RDS (e.g., from the $k_2$ step to the $k_1$ process as the leaving-group basicity decreases). Dissection of $k_N$ into the microscopic rate constants associated with the reactions of 6a-e with piperidine (e.g., $k_1$ and $k_2/k_{-1}$ ratio) also supports the proposed mechanism.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

CCD Photometry of a δ Scuti Variable HR 2707 (=21 Mon) (δ Scuti형 변광성 HR 2707(=21 Mon)의 CCD 측광)

  • Lee, Ho;Kim, Seung-Lee;Cho, Sung-Il;Park, Hong-Suh
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.670-676
    • /
    • 2006
  • We present a B and V band time-series CCD photometry of ${\delta}$ Scuti type variable star HR 2707. The observation was carried out for 45 nights between November 13, 2001 and February 20, 2002 with a 40 cm telescope equipped with a 1K CCD camera at the Korea National University of Education Optical Astronomy Observatory. Through the time-series CCD photometry we obtained 3011 V band and 6562 B band CCD frames. In some of these data, the V band data obtained for seven nights in January of 2002, had been used as a part of a multi-site campaign by Lopez de Coca et al. (2003). To detect pulsational frequencies, we used Discrete Fourier Transformation (DFT) and linear least square method. We have detected eight resonable pulsational frequencies and compare to previous studies we determine $f_1,\;f_2,\;f_3,\;f_4,\;f_5$ of Lopez do Coca et al. (2003) and $f_4$ for derived from this study are real pulsational frequencies of HR 2707.

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.