• Title/Summary/Keyword: linear resolution

Search Result 753, Processing Time 0.037 seconds

Analytical Characteristics and Applications of Laser Ionization Mass Spectrometry

  • 임훙선;윤하섭;김성규
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 1997
  • We have built a laser ionization mass spectrometer (LIMS) for chemical composition analysis of solid samples, which employs an Nd:YAG laser and a time-of-flight mass analyzer. In this spectrometer, the maximum mass we identified clearly is higher than 2000 amu. A mass resolution of 230 has been achieved at m/z 208 (Pb element) in the linear TOFMS and can be even improved up to 1550 by employing a reflectron. The detection limit is determined to be on the order of ppm for Fe and In. The depth resolution is found to be about 20Å/spectrum with a laser power of 0.5 J/cm2. We also report a preliminary application of the LIMS to identifying impurities resident in several solid samples.

Direct Epipolar Image Generation From IKONOS Stereo Imagery Based On RPC and Parallel Projection Model

  • Oh, Jae-Hong;Shin, Sung-Woong;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.451-456
    • /
    • 2006
  • Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (20 Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.

Improvement of Accuracy in Moire-type Laser Encoder Using Four Point Method (4점법을 이용한 모아레식 레이저 엔코우더의 정밀 정확도 향상)

  • Jeon, Byeong Wook;Park, Too Won;Lee, Myung Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.19-25
    • /
    • 1995
  • Presently, along with the advance of high-technology, the precise measurement of linear displacement has become a staple requirement, and consequently the high resolution with submicron order has also been required in precise positioning and carriaging. In this paper, we advance a propose on a new type of laser encoder based on the principle of phase analysis of the moire fringes from superimposed two gratings. The phase angle as an information of displacement can be accurately calculated by detecting the change in brighness at four points of the fringes. The actual application of four point method to the moire fringes is performed thru microcomputer for general purpose, and the measuring procedure is also studied in this research. As an experimental result, in the case of using 20 .mu. m-pitch gratings, it is validated that this method has the resolution of 0.01 .mu. m and the accuracy of .+-. 0.15 .mu. m over the setting range of 100mm.

  • PDF

Pole-pole array electrical resistivity survey and an effective interpretational scheme of its data (2극법 전기비저항 탐사 자료의 효율적인 해석방법)

  • Cho Dong-Heng;Lee Chang Yourl;Jee Sang-Keun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.112-131
    • /
    • 2000
  • In spite of its many strong points, pole-pole electrode configuration is not often used for ground electrical resistivity survey except for bore hole survey as normal logging and for archaeological investigation. Above all, poor spatial resolution of pole-pole survey may be responsible for this. But recent experiences so far gained by the present authers lead them to think that pole-pole survey can be at least a viable means of reconnaissance survey in near-surface conductive environment and an effective interpretational scheme may augment its resolution. As well known, a response of any other electrode configuration is a linear combination of pole-pole responses. Based on this principle of linear superposition and the principle of reciprocity, the other 'responses' can be derived with simple additions and subtractions of pole-pole responses. Though such responses are not always correct due to the adverse effects of noises, combined with the potential decay curves, they can be helpful to interprete better pole-pole survey data especially in connection of the resolution. This can be comparable to the use of the first or second derivatives of gravity and magnetic intensity surveys.

  • PDF

A selective sparse coding based fast super-resolution method for a side-scan sonar image (선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘)

  • Park, Jaihyun;Yang, Cheoljong;Ku, Bonwha;Lee, Seungho;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • Efforts have been made to reconstruct low-resolution underwater images to high-resolution ones by using the image SR (Super-Resolution) method, all to improve efficiency when acquiring side-scan sonar images. As side-scan sonar images are similar with the optical images with respect to exploiting 2-dimensional signals, conventional image restoration methods for optical images can be considered as a solution. One of the most typical super-resolution methods for optical image is a sparse coding and there are studies for verifying applicability of sparse coding method for underwater images by analyzing sparsity of underwater images. Sparse coding is a method that obtains recovered signal from input signal by linear combination of dictionary and sparse coefficients. However, it requires huge computational load to accurately estimate sparse coefficients. In this study, a sparse coding based underwater image super-resolution method is applied while a selective reconstruction method for object region is suggested to reduce the processing time. For this method, this paper proposes an edge detection and object and non object region classification method for underwater images and combine it with sparse coding based image super-resolution method. Effectiveness of the proposed method is verified by reducing the processing time for image reconstruction over 32 % while preserving same level of PSNR (Peak Signal-to-Noise Ratio) compared with conventional method.

Optical Ozone Monitor Using UV Source

  • Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.49-52
    • /
    • 2003
  • Two types of ozone monitors using UV absorption method were tried in consideration of cost of the monitor and precision in measuring. The high concentration ozone monitor for high concentration real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source, a photo multiplier tube as UV detector and signal processing unit for the most part. This structure could be very useful for low price high concentration ozone monitor due to simple system structure and fairly good monitoring characteristics. The developed system showed good linear output characteristics to ozone in the measuring concentration range of 0.05 and 2 wt.%. For accuracy ambient ozone monitoring in ambient in ppm level, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit in brief speaking was proposed our study for the first time in the world. The developed system showed good linearity and sensitivity in relative low measuring range between 10ppm and 10,000ppm, and showed some feasibility of high resolution ozone monitor using CCD array as photodetector.

  • PDF

Organizartion of Measurin System of Circular Motion Accuracy of Machining Center (머시닝센터의 원운동정도 측정시스템의 구성)

  • 김영석;낭궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.305-311
    • /
    • 1993
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan,Circular Test Method by Knapp and r $_{- \theta}$ Mathod by Tsutsumi etc., but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units. In this paper, in use of magnetic type linear scale with resolution of 0.5 .mu. m and tick pulses come out from computer, it has become possible for detecting of linear displacement of radial errors and measuring of revolution angle of circular motion of NC machine tools.

  • PDF

Nonlinear Modeling of Piezoelectric Actuators for Scanning Tunneling Microscopy (주사터널링현미경을 위한 압전구동기의 비선형 모델링)

  • 정승배;박준호;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2272-2283
    • /
    • 1994
  • In scanning tunneling microscopy, the piezoelectric actuator is popuilarly used in stacked type as it can provide remarkable positioning resolution and stiffness. The actuator, however, exhibits a considerable amount of hystereic nonlinearity, resulting in losses of overall measuring accuracy when a linear model is used for its control and calibration, In this study, a nonlinear model is proposed for predicting the precise relationship between the input connand voltage and the output displacement of the actuator itself, cross-coupled electrical behaviours of the driving circuit with the actuator, and mechanical characteristics of the driven components of the actuator. Finally experimental results prove that the nonlinear model enhances the measuring of scanning tunneling microscopy by an order ten in comparison with a conventional linear model.

능동제어모세관을 이용한 유정압테이블의 운동정도 향상

  • 송영찬;박천홍;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.250-256
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clarance of table is actively controlled corresponding to the amount of error with the nariable capillary,anmed as ACC. In previous paper,through the basic test, it was confirmed that by the use of ACC,the error motion within 2.7 .mu.m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the freqency bandwidth of 5.5Hz structurally. In this paper,we performed practital compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy,iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error,the linear and angular motion error are improved upto 0.25 .mu.m and 0.4arcsec,which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

A Study on X-band Frequency Synthesizer for Radar Transceiver (레이더 송수신기용 X 밴드 주파수 합성기에 관한 연구)

  • Park, Dong-Kook;Lee, Hyun-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.444-448
    • /
    • 2006
  • In this paper, a frequency synthesizer for X-band FMCW radars is proposed. Some X-band FMCW radars have been used as a level sensor for tanker ship and the resolution of the level sensor may be mainly depend on linearity of frequency sweep. For a linear frequency sweep. the proposed synthesizer employs a phase-locked loop using prescalars and a high speed digital PLL chip. The measured results show that the linear frequency sweep range is from 10 GHz to 11 GHz and the output power of the synthesizer is minium 7 dBm. and the phase noise is about -80 dBc/Hz at 100 KHz offset from 11 GHz.