• Title/Summary/Keyword: linear reservoir model

Search Result 99, Processing Time 0.032 seconds

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Estimation of Agricultural Reservoir Water Storage Based on Empirical Method (저수지 관리 관행을 반영한 농업용 저수지 저수율 추정)

  • Kang, Hansol;An, Hyunuk;Nam, Wonho;Lee, Kwangya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.1-10
    • /
    • 2019
  • Due to the climate change the drought had been occurring more frequently in recent two decades as compared to the previous years. The change in the pattern and frequency of the rainfall have a direct effect on the farming sector; therefore, the quantitative estimation of water supply is necessary for efficient agricultural water reservoir management. In past researches, there had been several studies conducted in estimation and evaluation of water supply based on the irrigational water requirement. However, some researches had shown significant differences between the theoretical and observed data based on this requirement. Thus, this study aims to propose an approach in estimating reservoir rate based on empirical method that utilized observed reservoir rate data. The result of these two methods in comparison with the previous one is seen to be more fitted for both R2 and RMSE with the observed reservoir rate. Among these procedures, the method that considers the drought year data shows more fitted outcomes. In addition, this new method was verified using 15-year (2002 to 2006) linear regression equation and then compare the preceeding 3-year (1999 to 2001) data to the theoretical method. The result using linear regression equation is also perceived to be more closely fitted to the observed reservoir rate data than the one based on theoretical irrigation water requirement. The new method developed in this research can therefore be used to provide more suitable supply data, and can contribute to effectively managing the reservoir operation in the country.

Flood Control Operation of Soyang and Choongju Reservoirs by the Min-max DP (Min-Max DP에 의한 소양 및 충주호의 홍수조절운영)

  • 오영민;이길성
    • Water for future
    • /
    • v.19 no.4
    • /
    • pp.339-346
    • /
    • 1986
  • A real-time single reservoir operation model using the Min-max Dynamic Programming for the flood control of Soyanggang Dam and Choongju Dam is developed. The objective function is to minimize the maximum release from each dam and the constraints are those from ther reservoir and channel characteristics. Control and utilization efficiencies are used to measure the performance of the reservoir operation method (ROM). In comparison with those of simulation models(such as the Rigid ROM, the Technical ROM and the Linear Decision Rule), the efficiencies of the optimization model are superior for all return periods.

  • PDF

Simulating Daily Inflow and Release Rates for Irrigation Reservoirs (1) -Modeling Inflow Rates by A Linear Reservoir Model- (관개용 저수지의 일별유입량과 방류량의 모의발생(I)-선형 저수지 모형에 의한 유입량의 추정-)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.50-62
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for irrigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. Inflow rates to a reservoir need to be accurately described, which may be simulated using a hydrologic model from daily rainfall data. And the objective of this paper is to develop, test, and apply a hydrologic model for daily runoff simmulation. A well - known tank model was selected and modified to simulate daily inflow rates. The model parameters were calibrated using observed runoff data from twelve watersheds, Relationships between the parameters and the watershed characteristics were derived by a multiple regression analysis. The simulation results were in agreement with the data. The inflow model was found to simulate low flow conditions more accurately than high flow conditions, which may be adequate for water resources utilization.

  • PDF

An Evaluatiou of Parameter Variations for a Linear Reservoir (TANK) Model with Watershed Characteristics (유역특성에 따른 탱크모형 매개변수의 변화)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.42-52
    • /
    • 1986
  • This study involves the estimation of optimal ranges of parameters for a linear watershed model. A well-known TANK model was chosen and a linear combination of four tanks assumed. The model was used to simulate daily streamflow for six watersheds of different sizes and by a trial-and-error approach a set of optimal parameters defined. The parameters were related to watershed sizes and land use conditions. Optimal parameters for ungaged conditions were defined from the relationships; daily streamflow simulated and compared to the observed date. The simulated results were in a general agreement with the data.

  • PDF

Forecasting Monthly Agricultural Reservoir Storage and Estimation of Reservoir Drought Index (RDI) Using Meteorological Data Based Multiple Linear Regression Analysis (기상자료기반 다중선형회귀분석에 의한 농업용 저수지 월단위 저수율 예측 및 저수지 가뭄지수(RDI) 추정)

  • LEE, Ji-Wan;KIM, Jin-Uk;JUNG, Chung-Gil;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.19-34
    • /
    • 2018
  • The purpose of this study is to estimate monthly agricultural reservoir storage with multiple linear regression model(MLRM) based on reservoir storage and meteorological data. The regression model was developed using 15 years(2002 to 2016) of 3,067 reservoirs by KRC(Korea Rural Community) and 63 meteorological stations by KMA (Korean Meteorological Administration), and the MLRM showed the determination coefficient($R^2$) of 0.51~0.95. The MLRM was applied to 9 selected reservoirs among the whole reservoirs and validated with $R^2$ of 0.44~0.81. The ROC(Receiver Operating Characteristics) analysis of Reservoir Drought Index(RDI) classified by comparing the present reservoir storage with normal year(1976~2005 average) reservoir storage showed average value of 0.64 for 2 years(2015~2016) with the highest value of 0.70 for winter period, lowest value of 0.58 for summer period. If 1 to 3 months weather forecasting data such as Glosea5 produced by KMA are applied, the predicted monthly reservoir storage from the MLRM can be a useful information for agricultural drought pre-preparation.

Estimation of Parameters of the Linear, Discrete, Input-Output Model (선형 이산화 입력-출력 모형의 매개변수 결정에 관한 연구)

  • 강주복;강인식
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.193-199
    • /
    • 1993
  • This study has two objectives. One is developing the runoff model for Hoe-Dong Reservoir basin located at the upstream of Su-Young River in Pusan. To develop the runoff model, basic hydrological parameters - curve number to find effective rainfall, and storage coefficient, etc. - should be estimated. In this study, the effective rainfall was calculated by the SCS method, and the storage coefficient used in the Clark watershed routing was cited from the report of P.E.B. The other is the derivation of transfer function for Hoe-Dong Reservoir basin. The linear, discrete, input-output model which contained six parameters was selected, and the parameters were estimated by the least square method and the correlation function method, respectively. Throughout this study, rainfall and flood discharge data were based on the field observation in 1981.8.22 - 8.23 (typhoon Gladys). It was observed that the Clark watershed routing regenerated the flood hydrograph of typhoon Gladys very well, and this fact showed that the estimated hydrological parameters were relatively correct. Also, the calculated hydrograph by the linear, discrete, input-output model showed good agreement with the regenerated hydrograph at Hoe-Dong Dam site, so this model can be applicable to other small urban areas. Key Words : runoff, effective rainfall, SCS method, clark watershed iou상ng, hydrological parameters, parameter estimation, least square method, correlation function method, input-output model, typhoon gladys.

  • PDF

Development of Naïve-Bayes classification and multiple linear regression model to predict agricultural reservoir storage rate based on weather forecast data (기상예보자료 기반의 농업용저수지 저수율 전망을 위한 나이브 베이즈 분류 및 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.839-852
    • /
    • 2018
  • The purpose of this study is to predict monthly agricultural reservoir storage by developing weather data-based Multiple Linear Regression Model (MLRM) with precipitation, maximum temperature, minimum temperature, average temperature, and average wind speed. Using Naïve-Bayes classification, total 1,559 nationwide reservoirs were classified into 30 clusters based on geomorphological specification (effective storage volume, irrigation area, watershed area, latitude, longitude and frequency of drought). For each cluster, the monthly MLRM was derived using 13 years (2002~2014) meteorological data by KMA (Korea Meteorological Administration) and reservoir storage rate data by KRC (Korea Rural Community). The MLRM for reservoir storage rate showed the determination coefficient ($R^2$) of 0.76, Nash-Sutcliffe efficiency (NSE) of 0.73, and root mean square error (RMSE) of 8.33% respectively. The MLRM was evaluated for 2 years (2015~2016) using 3 months weather forecast data of GloSea5 (GS5) by KMA. The Reservoir Drought Index (RDI) that was represented by present and normal year reservoir storage rate showed that the ROC (Receiver Operating Characteristics) average hit rate was 0.80 using observed data and 0.73 using GS5 data in the MLRM. Using the results of this study, future reservoir storage rates can be predicted and used as decision-making data on stable future agricultural water supply.

Spatial Distribution Mapping of Cyanobacteria in Daecheong Reservoir Using the Satellite Imagery (위성영상을 이용한 대청호 남조류의 공간 분포 맵핑)

  • Back, Shin Cheol;Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.53-63
    • /
    • 2016
  • Monitoring of cyanobacteria bloom in reservoir systems is important for water managers responsible of water supply system. Cyanobacteria affect the taste and smell of water and pose considerable filtration problems at water use places. Harmful cyanobacteria bloom in reservoir have significant economic impacts. We develop a new method for estimating the cyanobacteria bloom using Landsat TM and ETM+ data. Developed model was calibrated and cross-validated with existing in situ measurements from Daecheong Reservoir's Water Quality Monitoring Program and Algae Alarm System. Measurements data of three stations taken from 2004 to 2012 were matched with radiometrically converted reflectance data from the Landsat TM and ETM+ sensor. Stepwise multiple linear regression was used to select wavelengths in the Landsat TM and ETM+ bands 1, 2 and 4 that were most significant for predicting cyanobacteria cell number and bio-volume. Based on statistical analysis, the linear models were that included visible band ratios slightly outperformed single band models. The final monitoring models captured the extents of cyanobacteria blooms throughout the 2004-2012 study period. The results serve as an added broad area monitoring tool for water resource managers and present new insight into the initiation and propagation of cyanobacteria blooms in Daecheong reservoir.