• Title/Summary/Keyword: linear reservoir

Search Result 168, Processing Time 0.031 seconds

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.

Interannual and Seasonal Variations of Water Quality in Terms of Size Dimension on Multi-Purpose Korean Dam Reservoirs Along with the Characteristics of Longitudinal Gradients (우리나라 다목적댐 인공호들의 규모에 따른 연별.계절별 수질변이 및 상.하류간 종적구배 특성)

  • Han, Jeong-Ho;Lee, Ji-Yeoun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.319-337
    • /
    • 2010
  • Major objective of this study was to determine interannual and seasonal water quality along with characteristics of longitudinal gradients along the reservoir axis of the riverine zone (Rz)-to-lacustrine zone (Lz). Water quality dataset of five years during 2003~2007 used here were obtained from Ministry of Environment, Korea and ten physical, chemical and biological parameters were analyzed in the study. Similarity analysis, based on moropho-hydrological variables of reservoir surface area, watershed area, total inflow, and outflow, showed that the reservoirs were categorized as three groups of large-dam reservoirs (Chungju Reservoir, Daecheong Reservoir and Soyang Reservoir), mid-size reservoirs (Andong Reservoir, Yongdam Reservoir, Juam Reservoir and Hapcheon Reservoir), and small-size reservoirs (Hoengseong Reservoir and Buan Reservoir). According to the data comparison of high-flow year (2003) vs. lowflow year (2005), dissolved oxygen (DO), pH, biological oxygen demand (BOD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), chlorophyll-a (CHL) and electrical conductivity (EC) declined along the longitudinal axis of Rz to Lz and water transparency, based on Secchi depth (SD), increased along the axis. These results indicate that transparency was a function of Values of pH, DO, SS, SD, and EC at each site were greater in the low-flow year (2005) than the high-flow year (2003), whereas values of BOD, COD, TN, TP and CHL were greater in the high-flow year (2003). When values of TN, TP, CHL and SD in nine reservoirs were compared in the three zones of Rz, Tz, and Lz, values of TN, TP and CHL declined along longitudinal gradients and SD showed the opposite due to the sedimentation processes from the water column. Values of TN were not statistically correlated with TP values. The empirical linear models of TP-CHL and CHL-SD showed significant (p<0.05, $R^2$>0.04). In the mid-size reservoirs, the variation of CHL was explained ($R^2$=0.2401, p<0.0001, n=239) by the variation of TP. The affinities in the correlation analysis of mid-size reservoirs were greater in the CHL-SD model than any other empirical models, and the CHL-SD model had an inverse relations. In the meantime, water quality variations was evidently greater in Daecheong Reservoir than two reservoirs of Andong Reservoir and Hoengseong Reservoir as a result of large differences of water quality by long distance among Rz, Tz and Lz.

A Study on Inversion of Seismic Normal Reflection Data (탄성파 수직반사자료의 역산 연구)

  • Yang, Dong Woo;Yang, Seung Jin;Jang, Seong Hyeong
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.629-637
    • /
    • 1996
  • In this paper a numerical experiment is conducted to determine the low acoustic impedance of a thin oil or gas reservoir from a seismogram by using the generalized linear inversion method. The seismograms used are normal incident synthetic seismograms containing p-wave primary reflections, multiples, and peg-leg multiples on the layers consisting of oil-, gas-, water-filled sandstone incased in shales. In this experiment the acoustic impedance, the location of reservoir boundary, thickness, and source wavelet are assumed initially and revised iteratively by the least-squares-error technique until the difference between the seismogram and calculated one is very small. This experiment shows that the acoustic impedance and thickness, about 10 m thick, can be determined by the inversion.

  • PDF

Earthquake stresses and effective damping in concrete gravity dams

  • Akpinar, Ugur;Binici, Baris;Arici, Yalin
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.251-266
    • /
    • 2014
  • Dynamic analyses for a suite of ground of motions were conducted on concrete gravity dam sections to examine the earthquake induced stresses and effective damping. For this purpose, frequency domain methods that rigorously incorporate dam-reservoir-foundation interaction and time domain methods with approximate hydrodynamic foundation interaction effects were employed. The maximum principal tensile stresses and their distribution at the dam base, which are important parameters for concrete dam design, were obtained using the frequency domain approach. Prediction equations were proposed for these stresses and their distribution at the dam base. Comparisons of the stress results obtained using frequency and time domain methods revealed that the dam height and ratio of modulus of elasticity of foundation rock to concrete are significant parameters that may influence earthquake induced stresses. A new effective damping prediction equation was proposed in order to estimate earthquake stresses accurately with the approximate time domain approach.

Mechanical Model of Displacement-based Time Domain Transmitting Boundary for Flexible Dam-Reservoir Interactions (유연한 댐-호소의 상호작용을 위한 변위 기초 시간 영역 전달 경계의 역학적 모델)

  • 이진호;김재관;조정래
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.232-237
    • /
    • 2003
  • A new displacement-based transmitting boundary is developed for the transient analysis of dynamics interactions between flexible dam body and reservoir impounding compressible water The mechanical model is derived analytically in time domain from the kernel function, Bessel function, appearing in the convolution integral and corresponding mechanical model is developed that consists of mass, damping and stiffness matrices. The resulting system of, equations uses displacement degrees of freedom. Hence it can be coupled directly with the displacement-based solid finite element model of dam body, linear of nonlinear. The method was applied to the rigid and flexible dam models. The results showed very good agreement : with the semi-analytic frequency domain solutions.

  • PDF

A General Solution of the Integral Equation for Erlang Distribution

  • Lee Yoon Dong;Choi Hyemi;Lee Eun-kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.435-442
    • /
    • 2005
  • The mathematical properties of the sequentially operated systems are often described by integral equations. Reservoir system of a product and sequential probability ratio test (SPRT) are typical examples of sequentially operated systems. When the underlying random quantities follow Erlang distribution, a systematic method was developed to solve the integral equations. We extend the method to the cases having accrual functions of more general types. The solutions of the integral equations are represented as a linear combination of distribution functions, and the coefficients of the linear combination are obtained by solving linear system derived from the continuity condition of the solutions.

An Experimental Study on Selective Withdrawal from Linear Stratified Tank (선형 성층수조에서의 선택취수에 관한 실험적 연구)

  • Kim, Young Do;Park, Jae Hyeon;Son, Byung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.499-505
    • /
    • 2011
  • The mixing behavior of turbidity currents in a reservoir is closely related with the annual temperature change of the reservoir. In the summer, the reservoir has a well defined structure: one or two thermoclines and some layers of different densities. This density stratification inhibits vertical mixing and affects various hydrodynamic processes within the reservoir. Therefore, many reservoirs can be operated to release water of the specific quality with the selective withdrawal. In this study, the hydraulic experiments were performed to analyze the efficiency of selective withdrawal. The velocity distributions are measured with PIV in the stratified tank with the "two-tank" method. The relationship between the Richardson number and the selective withdrawal efficiency are provided using the measured velocity distributions.

A Technique of Inland Drainage Control Considering flood Characteristics of the Han River (한강홍수특성을 고려한 내배수 처리기법)

  • Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.99-108
    • /
    • 1991
  • Rapid changes of urban hydrologic events need new management operation rule of detention reservoir which is essential outflow control system in urban area. Therefore, this study is to develop the outflow management method of Seoul city considering the Han river flood characteristics, to analyze the inundation of detention reservoir according to variation of design storm patterns, and to examine the safety of gate due to design flood water level. From this study, new operation rule is presented. The design storm patterns are determined by instantaneous intensity method and Huff's quartile method. And the inflow hydrograph of detention reservoir is obtained by applying ILLUDAS model and RRL method. The operation rule of existing drainage pump is designed to have linear relation between storage and pumping discharge. But in this study, it is effective for preventing inundation when the operation rule of drainage pump have Gaussian function which is combined the storage of detention reservoir with its inflow according to increasing or decreasing of inflow hydrograph.

  • PDF

Applications of Machine Learning Models for the Estimation of Reservoir CO2 Emissions (저수지 CO2 배출량 산정을 위한 기계학습 모델의 적용)

  • Yoo, Jisu;Chung, Se-Woong;Park, Hyung-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.326-333
    • /
    • 2017
  • The lakes and reservoirs have been reported as important sources of carbon emissions to the atmosphere in many countries. Although field experiments and theoretical investigations based on the fundamental gas exchange theory have proposed the quantitative amounts of Net Atmospheric Flux (NAF) in various climate regions, there are still large uncertainties at the global scale estimation. Mechanistic models can be used for understanding and estimating the temporal and spatial variations of the NAFs considering complicated hydrodynamic and biogeochemical processes in a reservoir, but these models require extensive and expensive datasets and model parameters. On the other hand, data driven machine learning (ML) algorithms are likely to be alternative tools to estimate the NAFs in responding to independent environmental variables. The objective of this study was to develop random forest (RF) and multi-layer artificial neural network (ANN) models for the estimation of the daily $CO_2$ NAFs in Daecheong Reservoir located in Geum River of Korea, and compare the models performance against the multiple linear regression (MLR) model that proposed in the previous study (Chung et al., 2016). As a result, the RF and ANN models showed much enhanced performance in the estimation of the high NAF values, while MLR model significantly under estimated them. Across validation with 10-fold random samplings was applied to evaluate the performance of three models, and indicated that the ANN model is best, and followed by RF and MLR models.

Determination of Hydrophyte Index of Native Plant on the Downstream Slope of Earth Fill Dam (필댐 하류사면 자생식물의 습생지수 결정)

  • Kim, Hyun Soo;Ryu, Bum Hee;Park, Seung Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.131-144
    • /
    • 2019
  • The purpose of study was to determine the hygrophyte index of each plant(HIP) considering the moisture environment condition (MEC) of the native plants on the downstream slope of the fill dam and evaluate its applicability which to develop a method to search for leaks and saturated zones of the fill dam for status evaluation of precision safety diagnosis. The HIP was weighted average and consisted of 19 ranks. The weighted average was calculated according to the following three procedures: First, the linear assumption was made according to the actual habitat environmental conditions, the second one was weighted to 10% of the optimal habitat condition, and finally the average value of the distribution range values. The Hygrophyte index of vegetation at each plot (HIV) was obtained from the Sinheung reservoir (Yesan-gun, Chungcheongnam-do) using the results of vegetation survey of the Sinheung reservoir with precision safety diagnosis and suggested the use of the hygrophyte index of the cultivated vegetation. The average HIP range of plant species that emerged in 50 survey sites on the downstream slope of the Sinheung reservoir is 2.99 to 3.56. The coefficient of variation showed a large difference depending on the appearance of the leakage indicator plant(LIP) species. The range of HIV is 2.80 to 4.26, the mean value is 3.37, standard deviation is 0.37 and the coefficient of variation is 9.7%. As a result, the value of the coefficient of variation showed a large difference depending on the appearance of the plant species.