• Title/Summary/Keyword: linear quadratic controller

Search Result 252, Processing Time 0.027 seconds

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.

Design method of computer-generated controller for linear time-periodic systems

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.225-228
    • /
    • 1992
  • The purpose of this project is the presentation of new method for selection of a scalar control of linear time-periodic system. The approach has been proposed by Radziszewski and Zaleski [4] and utilizes the quadratic form of Lyapunov function. The system under consideration is assigned either in closed-loop state or in modal variables as in Calico, Wiesel [1]. The case of scalar control is considered, the gain matrix being assumed to be at worst periodic with the system period T, each element being represented by a Fourier series. As the optimal gain matrix we consider the matrix ensuring the minimum value of the larger real part of the two Poincare exponents of the system. The method, based on two-step optimization procedure, allows to find the approximate optimal gain matrix. At present state of art determination of the gain matrix for this case has been done by systematic numerical search procedure, at each step of which the Floquet solution must be found.

  • PDF

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

Transfer Function Derivation and LQG/LTR Speed Ratio Control for a Metal Belt CVT (금속벨트 CVT의 전달함수 도출과 변속비 LQG/LTR 제어)

  • 김종준;송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • In this paper, a transfer function was obtained for a PWM high speed solenoid valve controlled metal belt CVT system. The transfer function was defined as the ratio of speed ratio to PWM duty ratio and derived in time domain by linear regression analysis from the experimental results. The transfer function obtained showed different dynamic characteristics for the up and down shift. Also, LQG/LTR controller was designed for the CVT system using the transfer function. It is seen from the experimental results that LQG/LTR control showed good performance for the speed ratio tracking and disturbance rejection. The phase difference and relatively slow response are considered due to the inaccuracy os the transfer functions, which resulted from the inherent nonlinearities of the transmission characteristics of the metal belt CVT.

  • PDF

A Design on Robust Servo Controller Using ${\delta}$ - Operator (${\delta}$ - 연산자를 이용한 강인한 서보 제어기의 설계)

  • Hwang, Hyun-Joon;Kim, Jeong-Tek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2602-2604
    • /
    • 2000
  • In this paper, we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system. This servo control system is designed by applying a simple genetic algorithm to follow the output of the reference model optimally. The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

A Study on the Load Torque Observer based on Fuzzy Logic Control for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 제어기법 기반의 부하 토크관측기에 관한 연구)

  • Jung, Jin-Woo;Lee, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). A Linear Matrix Inequality(LMI) parameterization of the fuzzy observer gain is given, and the LMI conditions are derived for the existence of the fuzzy load torque observer guaranteeing $\alpha$-stability and linear quadratic performance. In this paper, a nonlinear speed controller is employed to validate the performance of the proposed fuzzy load torque observer, and various simulation results are presented under motor parameter and load torque variations.

A Sensorless and Versatile Temperature-Control System for MEMS Microheaters (온도센서를 사용하지 않는 MEMS 마이크로히터 온도제어시스템)

  • Bae, Byung-Hoon;Yeon, Jung-Hoon;Flachsbart Bruce R.;Shannon Mark A.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.544-547
    • /
    • 2006
  • In this paper, we present a temperature-controlled system for MEMS electrical resistance heaters without a temperature sensor. To rapidly control the heater temperature, the microheater system developed consists of a power supply, power amplifier, digital ${\underline{P}}roportional-{\underline{I}}ntegral-{\underline{D}}ifferential$ (PID) controller, and a quarter bridge circuit with the microheater and three resistors are nominally balanced. The microheaters are calibrated inside a convection oven to obtain the temperature coefficient with a linear or quadratic fit. A voltage amplifier applies the supply voltage proportional to the control signal from the PID controller. Small changes in heater resistance generate a finite voltage across the quarter bridge circuit, which is fed back to the PID controller to compare with the set-point and to generate the control signal. Two MEMS microheaters are used for evaluating the developed control system - a NiCr serpentine microheater for a preconcentrator and a Nickel microheater for ${\underline{P}}olymerase\;{\underline{C}}hain\;{\underline{R}}eaction$ (PCR) chip.

A Study on Control Characteristic and Application of Optimal Modulation Controller for HVDC Transmission System (초고압 직류 송전 시스템에 대한 최적 변조 제어기의 적용 및 제어 특성에 관한 연구)

  • Lee, J.M.;Hur, D.R.;Chung, D.I.;Chung, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1318-1320
    • /
    • 1999
  • Recently, according to the growth of national economy and the improvement of lining conditions, electric power demand is increasing gradually. So it is being examined to construct large thermal power plants or nuclear plants. For the effective use of lands and for the economy of generations sites, the distance between generation and demand locations becomes farther and farther. At the same time, people desire higher quality or electric power. So in this paper, the optimal modulation controller for HVDC transmission system are designed by a recursive algorithm that determines the state weighting matrix Q of a linear quadratic performance. It means that the application of optimal modulation controller in HVDC transmission system can contribute the propriety to the improvement of the stability in HVDC transmission system.

  • PDF

A Design of Suspension Controller for Magnetic Levitation System Using Gain Scheduling Control (이득계획제어에 의한 자기부상시스템의 부상제어기 설계)

  • Byun, Yeun-Sub;Cho, Tae-Shin;Kim, Young-Chol
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.57-66
    • /
    • 1999
  • In this paper, we propose design methods of suspension controller for magnetically levitated system(MAGLEV). In this interior, the study of Electromagnetic Suspension(EMS) which has several advantages is chiefly achieved but, because the EMS has highly nonlinear and unstable property it is difficult to design the suspension controller maintaining stability and high performance. Here a Gain Scheduling Control(GSC) based on pole-placement scheme and on linear quadratic gaussian(LQG) design is separately presented. The several control performance is shown by simulation.

  • PDF

Hybrid Technique for Active Vibration Control of Plate using Piezoceramic Actuators/Sensors (압전 작동기/감지기를 이용한 평판의 혼합형 능동 진동제어 기술)

  • Kim, Yeung-Sik;Lee, Chul;Kim, In-Soo
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1048-1058
    • /
    • 2000
  • Thipaper presents a methodology to suppress the vibration of thin rectangular plate clamped all edges using piezo-ceramic material as actuators and sensors. Dynamic characteristics of the structure bonded with distributed actuators/sensors are identified by the Multi-Input Multi-Output (MIMO) frequency domain modeling technique based on the experimental data. Hybrid control scheme is adopted and feedback controller is designed by LQG(Linear Quadratic Gaussian). Feedforward controller is adapted by multiple filtered -$x$ LMS(least mean square) algorithm. Experiment result demonstrates the effective reduction of the vibration label for both the transient and persistent external disturbances.

  • PDF