• Title/Summary/Keyword: linear pump

Search Result 179, Processing Time 0.027 seconds

Magnetic Field Distribution Analysis of Superconducting Niobium Foil of Linear Type Magnetic Flux Pump using Simulation (시뮬레이션을 이용한 리니어형 자속 플럭스 펌프에서의 초전도 니오븀 박막의 자장분포 해석)

  • Lee, Eung-Ro;Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.60-64
    • /
    • 2009
  • We investigated an operating characteristic of linear-type magnetic flux pump (LTMFP) as a current compensator under the various conditions. In order to explain the mechanism of the LTMFP, the magnetic behavior of superconducting Nb foil according to pumping actions should be understood. In this paper, the magnetic field analysis of superconducting Nb foil installed in LTMFP has been performed based on the three-dimensional finite element method (3D FEM). Through the simulation analysis, the normal spot region on the superconducting Nb foil is found to be enhanced swiftly over about 20 Hz. The simulated finding agreed with an analytical estimation based on the phenomenon of magnetic diffusion.

Analysis of Charging Characteristics of Linear Type Magnetic Flux Pump Depended on Traveling Speed of Magnetic Field (리니어형 자속펌프의 이동자장 속도에 따른 충전전류 특성 해석)

  • Chung, Yoon-Do;Kim, Hyun-Ki;Bae, Duck-Kweon;Yoon, Yong-Soo;Jo, Hyun-Chul;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • We already obtained magnetic behavior of superconducting Nb foil of linear type magnetic flux pump (LTMFP) by means of the FEM analysis. As well as, fundamental equations of pumping current were theoretically derived based on the pumping sequences according to the position of normal spot of the moving flux. In this paper, we experimentally investigated pumping performances of LTMFP with a wide range of traveling speed of magnetic field. In order to confirm the numerical and theoretical approaches, we explained the pumping characteristics of LTMFP by use of the calculation sequence of pumping current.

Theoretical Analysis of Charging Current of Linear Type Magnetic Flux Pump According to the Penetrated Position and Moving Speed of Magnetic Flux (침투자속의 위치와 이동속도에 따른 리니어형 자속펌프 충전전류의 이론적 해석)

  • Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • We proposed a linear type magnetic flux pump (LTMFP) as a power supply for superconducting magnet system. In order to explain the operating mechanism of pumping action, the pumping sequence based on penetrated position and moving speed of magnetic flux on the superconducting Nb foil should be understood. In this paper, we induced a theoretical equation for pumping current of LTMFP according to the position of normal spot and corresponding equivalent circuit. In addition, current charging tendencies under the intensity of magnetic flux and frequency were described based on the theoretical pumping equation.

Development of the Dynamic Simulation Program for the Multi-Inverter Heat Pump Air-Conditioner (멀티 인버터 히트펌프의 동특성 해석 프로그램의 개발)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1079-1088
    • /
    • 2001
  • A dynamic simulation model was developed to analyse the transient characteristics of a multi-inverter heat pump. The programs included a basic air conditioning system such as a evaporator, condenser, compressor, linear electronic expansion valve (LEV) and by-pass circuit. The theoretical model was derived from mass conservation and energy conservation equations to predict the performance of the multi-inverter heat pump at various operating conditions. Calculated results were compared with the values obtained from the experiments at different operation frequencies of compressor, area of the LEV and configuration of indoor units operation. The results of the simulation model showed a good agreement with the experimental ones, so that the model could be used as an efficient tool for thermodynamic design and control factor design of air-conditioners.

  • PDF

The Design of Flat Linear Induction Pump for Transferring Reactor Coolant (원자로 냉각재 이송을 위한 평편형 리니어 유도펌프의 설계)

  • Jang, S.M.;Wu, J.S.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.10-12
    • /
    • 1998
  • Pumping liquid metal in nuclear power plant application by conventional centrifugal pumps pose difficulties such as bearing wear out at high temperatures and leak proof sealing of the liquid metal. MHD machine is obtained by replacing solid conducting secondary of conventional motors with ionized gas or liquid metal. It is used for reactor cooling pump because of construction simplicity, perfect sealing and easy operation/maintenance MHD pump is complicated because it includes electromagnetic and hydrodynamic phenomena. The principle of MHD Pumps is described in this paper. We design small laboratory size Flat Linear Induction Pump(FLIP) for transferring sodium.

  • PDF

Optimization of outer core to reduce end effect of annular linear induction electromagnetic pump in prototype Generation-IV sodium-cooled fast reactor

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1380-1385
    • /
    • 2020
  • An annular linear induction electromagnetic pump (ALIP) which has a developed pressure of 0.76 bar and a flow rate of 100 L/min is designed to analysis end effect which is main problem to use ALIP in thermohydraulic system of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Because there is no moving part which is directly in contact with the liquid, such as the impeller of a mechanical pump, an ALIP is one of the best options for transporting sodium, considering the high temperature and reactivity of liquid sodium. For the analysis of an ALIP, some of the most important characteristics are the electromagnetic properties such as the magnetic field, current density, and the Lorentz force. These electromagnetic properties not only affect the performance of an ALIP, but they additionally influence the end effect. The end effect is caused by distortion to the electromagnetic field at both ends of an ALIP, influencing both the flow stability and developed pressure. The electromagnetic field distribution in an ALIP is analyzed in this study by solving Maxwell's equations and using numerical analysis.

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

A Hydraulic-Oil Pump System using SR Drive with a Direct Torque Control Scheme

  • Lee, Dong-Hee;Kim, Tae-Hyoung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.491-498
    • /
    • 2009
  • The hydraulic-oil pump is widely used for building machinery, brake systems of vehicles and automatic control systems due to its high dynamic force and smooth linear force control performance. This paper presents a novel direct instantaneous pressure control of the hydraulic pump system with SRM drive. The proposed hydraulic pump system embeds the pressure controller and direct instantaneous torque controller. Due to the proportional relationship between pump pressure and torque, pressure can be controlled by the motor torque directly. The proposed direct torque controller can reduce inherent torque ripple of SRM, and develop a smooth torque, which can increase the stability of the hydraulic pump. The proposed hydraulic pump system has also fast step response and load response. The proposed hydraulic pump system is verified by computer simulation and experimental results.

Coatings Properties and Efficiency Performance of Cr-DLC Films Deposited by Hybrid Linear Ion Source for Hydraulic Gear Pump (하이브리드 선형이온원에 의한 유압 기어펌프용 Cr-DLC코팅막의 특성과 효율성능)

  • Cha, Sun-Yong;Kim, Wang-Ryeol;Park, Min-Suk;Kwon, Se-Hun;Chung, Won-Sub;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • This paper describes the results of the application of Cr-Diamond-like carbon (DLC) films for efficiency improvement through surface modification of spur gear parts in the hydraulic gear pump. Cr-DLC films were successfully deposited on SCM 415 substrates by a hybrid coating process using linear ion source (LIS) and magnetron sputtering method. The characteristics of the films were systematically investigated using FE-SEM, nano-indentation, sliding tester and AFM instrument. The microstructure of Cr-DLC films turned into the dense and fine grains with relatively preferred orientation. The thickness formed in our Cr buffer layer and DLC coating layer were obtained the 487 nm and $1.14\;{\mu}m$. The average friction coefficient of Cr-DLC films considerably decreased to 0.15 for 0.50 of uncoated SCM415 material. The hardness and surface roughness of Cr-DLC films were measured 20 GPa and 10.76 nm, respectively. And then, efficiency tests were performed on the hydraulic gear pump to investigate the efficiency performance of the Cr-DLC coated spur gear. The experimental results show that the volumetric and mechanical efficiency of hydraulic gear pump using the Cr-DLC spur gear were improved up to 2~5% and better efficiency improvement could be attributed to its excellent microstructure, higher hardness, and lower friction coefficient. This conclusion proves the feasibility in the efficiency improvement of hydraulic gear pump for industrial applications.

Analysis and Design of Hybrid Electromagnetic Linear Actuator for Linear Pump (리니어 펌프 구동용 하이브리드 전자기 리니어 엑츄에이터 해석 및 설계)

  • Lee, Jung-Hun;Kim, Jin-Ho;Lee, Jae-Yong;Jeong, Sang-Hyun;Han, Bang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2010
  • The purpose of this paper is to analyze and design a new hybrid electromagnetic linear actuator for linear pumps. Solenoid linear actuator is widely used because it occupies small space due to no mechanical energy conversion system. In addition, the energy loss is very low and it has no noise. Conventional solenoid linear actuator, however, has the critical drawback of high power consumption. In this research, we present a new hybrid electromagnetic linear actuator using a permanent magnet in order to reduce power consumption. The enhanced performance of the hybrid linear actuator was verified by dynamic finite element analysis.