• Title/Summary/Keyword: linear parameter varying controller

Search Result 60, Processing Time 0.026 seconds

ROBUST OUTPUT FEEDBACK $H\infty$ CONTROL FOR UNCERTAIN DELAYED SINGULAR SYSTEMS

  • Kim, Jong-Hae;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.513-522
    • /
    • 2006
  • This paper considers a robust output feedback $H\infty$ controller design method for singular systems with time-varying delay in state and parameter uncertainty in system matrix by an LMI approach and observer based technique, which can be solved efficiently by convex optimization. The sufficient condition for the existence of controller and the controller design method are presented by strict LMI(linear matrix inequality) approach. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Guaranteed Cost Controller Design Method for Singular Systems with Time Delays using LMI (선형행렬부등식을 이용한 시간지연 특이시스템의 보장비용 제어기 설계방법)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.99-108
    • /
    • 2003
  • This paper is concerned with the problem of designing a guaranteed cost state feedback controller for singular systems with time-varying delays. The sufficient condition for the existence of guaranteed cost controller, the controller design method, and the optimization problem to get the upper bound of guaranteed cost function are proposed by LMI(linear matrix inequality), singular value decomposition, Schur complements, and change of variables. Since the obtained sufficient conditions can be changed to LMI form, all solutions including controller gain and the upper bound of guaranteed cost function can be obtained simultaneously. Moreover, the proposed controller design method can be extended to the problem of robust guaranteed cost controller design method for singular systems with parameter uncertainties and time-varying delays. The validity of the proposed design algorithm is investigated through a numerical example.

Robust observer-based $H_{\infty}$ control for singular systems (특이시스템의 강인 관측기 기반 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.7-9
    • /
    • 2004
  • This paper provides an observer-based $H_{\infty}$ controller design method for singular systems with and without time-varying delay by just one LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI (linear matrix inequality) approach. The design procedure involves solving an LMI. The observer-based $H_{\infty}$ controller in the existing results can be constructed from the coupled two or more conditions while the proposed controller design method can be obtained from an LMI condition, which can be solved efficiently by convex optimization. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables. An example is given to illustrate the results.

  • PDF

Enhancement of Roll Stability by Speed-Adaptive Robust Control (속도감은 강건제어에 의한 롤 운동 특성개선)

  • Kim, Hyo-Jun;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.167-175
    • /
    • 2001
  • This paper presents design of active roll controller of a vehicle and experimental study using the electric actuating roll control system. Firstly, parameter sensitivity analysis is performed based on 3DOF linear vehicle model. The controller is designed in the frame work of gain-scheduled H$\infty$ control scheme considering the varying parameters induced by laden and running vehicle condition. In order to investigate a feasibility of an active control system, experimental work is performed using hardware-in-the -loop setup which has been constructed by the devised electric actuating system and the full vehicle model with tire characteristics. The performance is evaluated by experiment using hardware-in-the -loop simulation under the conditions of some steer maneuvers and parameter variations.

  • PDF

Event-Triggered H2 Attitude Controller Design for 3 DOF Hover Systems (3 자유도 비행체 시스템의 이벤트 트리거 기반의 H2 자세 제어기 설계)

  • Jung, Hyein;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.139-148
    • /
    • 2020
  • This paper is concerned with the H2 attitude controller design for 3 degree of freedom (DOF) Hover systems with an event-triggered mechanism. The 3 DOF Hover system is an embedded platform for unmanned aerial vehicle (UAV) provided by Quanser. The mathematical model of this system is obtained by a linearization around operating points and it is represented as a linear parameter-varying (LPV) model. To save communication network resources, the event-triggered mechanism (ETM) is considered and the performance of the system is guaranteed by the H2 controller. The stabilization condition is obtained by using Lyapunov-Krasovskii functionals (LKFs) and some useful lemmas. The effectiveness of the proposed method is shown by simulation and experimental results.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines (승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구)

  • Park, Inseok;Hong, Seungwoo;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.