• Title/Summary/Keyword: linear negatively quadrant dependent

Search Result 2, Processing Time 0.015 seconds

A CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES UNDER LINEAR NEGATIVELY QUADRANT DEPENDENCE

  • Kim, Hyun-Chull
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.615-623
    • /
    • 2013
  • In this paper we establish a central limit theorem for weighted sums of $Y_n={\sum_{i=1}^{n}}a_n,_iX_i$, where $\{a_{n,i},\;n{\in}N,\;1{\leq}i{\leq}n\}$ is an array of nonnegative numbers such that ${\sup}_{n{\geq}1}{\sum_{i=1}^{n}}a_{n,i}^2$ < ${\infty}$, ${\max}_{1{\leq}i{\leq}n}a_{n,i}{\rightarrow}0$ and $\{X_i,\;i{\in}N\}$ is a sequence of linear negatively quadrant dependent random variables with $EX_i=0$ and $EX_i^2$ < ${\infty}$. Using this result we will obtain a central limit theorem for partial sums of linear processes.

ALMOST SURE MARCINKIEWICZ TYPE RESULT FOR THE ASYMPTOTICALLY NEGATIVELY DEPENDENT RANDOM FIELDS

  • Kim, Hyun-Chull
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.505-513
    • /
    • 2009
  • Let {$X_k;k{\in}N^d$} be centered and identically distributed random field which is asymptotically negative dependent in a certain case. In this note we prove that for $p{\alpha}$ > 1 and ${\alpha}$ > ${\frac{1}{2}}$ $E{\mid}X_1{\mid}^p(log^+{\mid}X_1{\mid}^{d-1})$ < ${\infty}$ if and only if ${\sum}_n{\mid}n{\mid}^{p{\alpha}-2}P$($max_{1{\leq}k{\leq}n{\mid}S_k{\mid}}$ > ${\epsilon}{\mid}n{\mid}$) < ${\infty}$ for all ${\epsilon}$ > 0, where log$^+$x = max{1,log x}.