• Title/Summary/Keyword: linear negative quadrant dependence

Search Result 6, Processing Time 0.017 seconds

STRONG LAW OF LARGE NUMBERS FOR ASYMPTOTICALLY NEGATIVE DEPENDENT RANDOM VARIABLES WITH APPLICATIONS

  • Kim, Hyun-Chull
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.201-210
    • /
    • 2011
  • In this paper, we obtain the H$\`{a}$jeck-R$\`{e}$nyi type inequality and the strong law of large numbers for asymptotically linear negative quadrant dependent random variables by using this inequality. We also give the strong law of large numbers for the linear process under asymptotically linear negative quadrant dependence assumption.

Comparing the empirical powers of several independence tests in generalized FGM family

  • Zargar, M.;Jabbari, H.;Amini, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.215-230
    • /
    • 2016
  • The powers of some tests for independence hypothesis against positive (negative) quadrant dependence in generalized Farlie-Gumbel-Morgenstern distribution are compared graphically by simulation. Some of these tests are usual linear rank tests of independence. Two other possible rank tests of independence are locally most powerful rank test and a powerful nonparametric test based on the $Cram{\acute{e}}r-von$ Mises statistic. We also evaluate the empirical power of the class of distribution-free tests proposed by Kochar and Gupta (1987) based on the asymptotic distribution of a U-statistic and the test statistic proposed by $G{\ddot{u}}ven$ and Kotz (2008) in generalized Farlie-Gumbel-Morgenstern distribution. Tests of independence are also compared for sample sizes n = 20, 30, 50, empirically. Finally, we apply two examples to illustrate the results.

ALMOST SURE MARCINKIEWICZ TYPE RESULT FOR THE ASYMPTOTICALLY NEGATIVELY DEPENDENT RANDOM FIELDS

  • Kim, Hyun-Chull
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.505-513
    • /
    • 2009
  • Let {$X_k;k{\in}N^d$} be centered and identically distributed random field which is asymptotically negative dependent in a certain case. In this note we prove that for $p{\alpha}$ > 1 and ${\alpha}$ > ${\frac{1}{2}}$ $E{\mid}X_1{\mid}^p(log^+{\mid}X_1{\mid}^{d-1})$ < ${\infty}$ if and only if ${\sum}_n{\mid}n{\mid}^{p{\alpha}-2}P$($max_{1{\leq}k{\leq}n{\mid}S_k{\mid}}$ > ${\epsilon}{\mid}n{\mid}$) < ${\infty}$ for all ${\epsilon}$ > 0, where log$^+$x = max{1,log x}.