• Title/Summary/Keyword: linear modeling

Search Result 1,735, Processing Time 0.03 seconds

Reliability of Classical Linear Modeling in Dynamic Analysis of Flexible Structures (유연 구조물의 동적해석시 고전적 선형모델링의 신뢰성)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1657-1664
    • /
    • 1995
  • For dynamic analysis of flexible structures, classical linear modeling has been widely used due to its several good aspects. However, it was found that the modeling often lost its accuracy. So, it is important to know the valid range of the modeling before it is used. more complicated modelings are needed to obtain reliable results only outside the valid range of the classical linear modeling. In this study, some rigid body motions of flexible structures which lead to the failure of the classical linear modeling are investigated. Hybrid deformation variable modeling, which is proved to be accurate in previous studies, is used to figure out the valid range of the classical linear modeling through numerical examples.

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Active Linear Modeling of Cochlear Biomechanics Using Hspice

  • Jarng Soon Suck;Kwon You Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.77-86
    • /
    • 2005
  • This paper shows one and two dimensional active linear modeling of cochlear biomechanics using Hspice. The advantage of the Hspice modeling is that the cochlear biomechanics may be implemented into an analog Ie chip. This paper explains in detail how to transform the physical cochlear biomechanics to the electrical circuit model and how to represent the circuit in Hspice code. There are some circuit design rules to make the Hspice code to be executed properly.

Fuzzy modeling using transformed input space partitioning

  • You, Je-Young;Lee, Sang-Chul;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.494-498
    • /
    • 1996
  • Three fuzzy input space partitoining methods, which are grid, tree, and scatter method, are mainly used until now. These partition methods represent good performance in the modeling of the linear system and nonlinear system with independent modeling variables. But in the case of the nonlinear system with the coupled modeling variables, there should be many fuzzy rules for acquiring the exact fuzzy model. In this paper, it shows that the fuzzy model is acquired using transformed modeling vector by linear transformation of the modeling vector.

  • PDF

Modeling of Non-linear Leaf Spring for Commercial Vehicle (상용차량의 비선형 Hotchkiss 스프링 모델링)

  • 유승환;김영배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A Hotchkiss spring has been widely utilized for commercial vehicle. Usually, the Hotchkiss spring has non-linear characteristics, i.e. it has a piecewise spring stiffness as well as hysterisis phenomenon. Therefore, the modeling of the Hotchkiss spring requires many considerations to fulfill satisfactory vehicle kinematic and dynamic relationships. Also, the spring has difficulties in modeling for presenting contact mechanism. In this paper, the modeling technique for the Hotchkiss spring has been descried. The modeling covers non-linear characteristics as well as contact problems for multi-body dynamic simulation. The force-displacement results are compared with experimental and FEM ones. Also, the comparison between three link type leaf spring model and proposed one has been considered in this paper.

Modeling and Evaluation of Linear Oscillating Actuators

  • Chen, X.;Zhu, Z.Q.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.517-524
    • /
    • 2012
  • The operation of linear oscillating system is complicated, involving system nonlinearities of both actuator and load, and variations of driving frequency in order to track the mechanical resonance. In this paper, both analytical and state-variable modeling techniques are used to investigate the influence of actuator parameters, such as back-emf/thrust force coefficient and cogging force, on the performance of linear oscillating systems. Analytical derivations are validated by simulations, and good agreements are achieved. The findings of the paper can greatly facilitate the design and evaluation processes of permanent magnet linear actuators.

A simple and rapid approach to modeling chromium breakthrough in fixed bed adsorber

  • Chu, Khim Hoong
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • A simple mathematical model for predicting fixed bed adsorption dynamics is described. The model is characterized by a linear adsorption isotherm and a linear driving force expression for mass transfer. Its analytic solution can be approximated with an algebraic equation in closed form which is easily evaluated by spreadsheet computation. To demonstrate one application of the fixed bed model, a previously published adsorption system is used as a case study in this work. The adsorption system examined here describes chromium breakthrough in a fixed bed adsorber packed with imidazole functionalized adsorbent particles and is characterized by a nonlinear adsorption isotherm. However, the equilibrium behavior of the fixed bed adsorber is in essence governed by a linear adsorption isotherm due to the use of a low influent chromium concentration. It is shown that chromium breakthrough is predicted reasonably well by the fixed bed model. The model's parameters can be easily extracted from independent batch experiments. The proposed modeling approach is very simple and rapid, and only Excel is used for computation.

Non linear seismic response of a low reinforced concrete structure : modeling by multilayered finite shell elements

  • Semblat, J.F.;Aouameur, A.;Ulm, F.J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.211-229
    • /
    • 2004
  • The main purpose of this paper is the numerical analysis of the non-linear seismic response of a RC building mock-up. The mock-up is subjected to different synthetic horizontal seismic excitations. The numerical approach is based on a 3D-model involving multilayered shell elements. These elements are composed of several single-layer membranes with various eccentricities. Bending effects are included through these eccentricities. Basic equations are first written for a single membrane element with its own eccentricity and then generalised to the multilayered shell element by superposition. The multilayered shell is considered as a classical shell element : all information about non-linear constitutive relations are investigated at the local scale of each layer, whereas balance and kinematics are checked afterwards at global scale. The non-linear dynamic response of the building is computed with Newmark algorithm. The numerical dynamic results (blind simulations) are considered in the linear and non linear cases and compared with experimental results from shaking table tests. Multilayered shell elements are found to be a promising tool for predictive computations of RC structures behaviour under 3D seismic loadings. This study was part of the CAMUS International Benchmark.

T-S Fuzzy Modeling of Synchronous Generator in a Power System (전력계통 동기발전기의 T-S Fuzzy 모델링)

  • Lee, Hee-Jin;Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1642-1651
    • /
    • 2008
  • The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.

Optimal Operation Scheduling of Cogeneration Systems Using Fuzzy Linear Programming Method (퍼지선형계획법을 이용한 열병합발전시스템의 최적운전계획수립)

  • Lee, Jong-Beom;Jung, Chang-Ho;Lyu, Seung-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.516-518
    • /
    • 1995
  • This paper presents the optimal short-term operation scheduling by using fuzzy linear programming method on cogeneration systems connected with auxiliary equipments. Simulation is performed in case of the bottomming cycle. Modeling of cogeneration systems and auxiliary equipments is done, the effectiveness of modeling is evaluated through the detailed simulation. After the optimal operation scheduling is established by using linear programming method, the last optimal operation scheduling is established by using fuzzy linear programming method. The results of simulation show the auxiliary equipments can be effeciently operated in case of the bottomming cycle by modeling proposed in this paper.

  • PDF