• Title/Summary/Keyword: linear mixed estimation

Search Result 78, Processing Time 0.022 seconds

Evaluation of EBLUP-Type Estimator Based on a Logistic Linear Mixed Model for Small Area Unemployment (소지역 실업자수 추정을 위한 로지스틱 선형혼합모형 기반 EBLUP 타입 추정량 평가)

  • Kim, Seo-Young;Kwon, Soon-Pil
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.891-908
    • /
    • 2010
  • In Korea, the small area estimation method is currently unpopular in generating o cial statistics. Because it may be difficult to determine the reliability for small area estimation, although small area estimation ha a sufficiently good advantage to generate small area statistics for Korea. This paper inspects the method of making small area unemployment through the small area estimation method. To estimate small area unemployment we used an EBLUP-type estimator based on a logistic linear mixed model. To evaluate the EBLUP-type estimator we accomplished the real data analysis and simulation experiment from the population and housing census data. In addition, small area estimates are compared to large sample survey estimates. We found the provided method in this paper is highly recommendable to generate small area unemployment as the official statistics.

Predictive analysis in insurance: An application of generalized linear mixed models

  • Rosy Oh;Nayoung Woo;Jae Keun Yoo;Jae Youn Ahn
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.437-451
    • /
    • 2023
  • Generalized linear models and generalized linear mixed models (GLMMs) are fundamental tools for predictive analyses. In insurance, GLMMs are particularly important, because they provide not only a tool for prediction but also a theoretical justification for setting premiums. Although thousands of resources are available for introducing GLMMs as a classical and fundamental tool in statistical analysis, few resources seem to be available for the insurance industry. This study targets insurance professionals already familiar with basic actuarial mathematics and explains GLMMs and their linkage with classical actuarial pricing tools, such as the Buhlmann premium method. Focus of the study is mainly on the modeling aspect of GLMMs and their application to pricing, while avoiding technical issues related to statistical estimation, which can be automatically handled by most statistical software.

Use of Generalized Linear Mixed Model for Pest Density in Repeated Measurement Data

  • Park, Heung-Sun;Cho, Ki-Jong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.69-74
    • /
    • 2003
  • The estimation of pest density is a prime concern of Integrated Pest Management (IPM) because the success of artificial intervention such as spraying pestcides or natural enemies depends on pest density. Also, the spatial pattern of pest population within plants or plots has been studies in various ways. In this study, we applied generalized linear mixed model to Tetranychus urticae Koch , two-spotted spider mite count in glasshouse grown roses. For this analysis, the subject-specific as well as pupulation-averaged approaches are used.

  • PDF

Maximum likelihood estimation of Logistic random effects model (로지스틱 임의선형 혼합모형의 최대우도 추정법)

  • Kim, Minah;Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.957-981
    • /
    • 2017
  • A generalized linear mixed model is an extension of a generalized linear model that allows random effect as well as provides flexibility in developing a suitable model when observations are correlated or when there are other underlying phenomena that contribute to resulting variability. We describe maximum likelihood estimation methods for logistic regression models that include random effects - the Laplace approximation, Gauss-Hermite quadrature, adaptive Gauss-Hermite quadrature, and pseudo-likelihood. Applications are provided with social science problems by analyzing the effect of mental health and life satisfaction on volunteer activities from Korean welfare panel data; in addition, we observe that the inclusion of random effects in the model leads to improved analyses with more reasonable inferences.

DISCRETE-TIME MIXED $H_2/H_{\infty}$ FILTER DESIGN USING THE LMI APPROACH

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.129-132
    • /
    • 1999
  • This paper deals with the optimal filtering problem constrained to input noise signal corrupting the measurement output for linear discrete-time systems. The transfer matrix H$_2$and/or H$_{\infty}$ norms are used as criteria in an estimation error sense. In this paper, the mixed $H_2/H_{\infty}$ filtering Problem in lineal discrete-time systems is solved using the LMI approach, yielding a compromise between the H$_2$and H$_{\infty}$ filter designs. This filter design problems we formulated in a convex optimization framework using linear matrix inequalities. A numerical example is presented.

  • PDF

A Note on Performance of Conditional Akaike Information Criteria in Linear Mixed Models

  • Lee, Yonghee
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.507-518
    • /
    • 2015
  • It is not easy to select a linear mixed model since the main interest for model building could be different and the number of parameters in the model could not be clearly defined. In this paper, performance of conditional Akaike Information Criteria and its bias-corrected version are compared with marginal Bayesian and Akaike Information Criteria through a simulation study. The results from the simulation study indicate that bias-corrected conditional Akaike Information Criteria shows promising performance when candidate models exclude large models containing the true model, but bias-corrected one prefers over-parametrized models more intensively when a set of candidate models increases. Marginal Bayesian and Akaike Information Criteria also have some difficulty to select the true model when the design for random effects is nested.

Shrinkage Small Area Estimation Using a Semiparametric Mixed Model (준모수혼합모형을 이용한 축소소지역추정)

  • Jeong, Seok-Oh;Choo, Manho;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.605-617
    • /
    • 2014
  • Small area estimation is a statistical inference method to overcome large variance due to a small sample size allocated in a small area. A shrinkage estimator obtained by minimizing relative error(RE) instead of MSE has been suggested. The estimator takes advantage of good interpretation when the data range is large. A semiparametric estimator is also studied for small area estimation. In this study, we suggest a semiparametric shrinkage small area estimator and compare small area estimators using labor statistics.

Bayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models

  • Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.235-240
    • /
    • 2013
  • Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practically use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the random effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition approach has been used to explain a heterogenous random effects covariance matrix and the subsequent estimated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using these methods.

M-quantile kernel regression for small area estimation (소지역 추정을 위한 M-분위수 커널회귀)

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.749-756
    • /
    • 2012
  • An approach widely used for small area estimation is based on linear mixed models. However, when the functional form of the relationship between the response and the input variables is not linear, it may lead to biased estimators of the small area parameters. In this paper we propose M-quantile kernel regression for small area mean estimation allowing nonlinearities in the relationship between the response and the input variables. Numerical studies are presented that show the sample properties of the proposed estimation method.

Credibility estimation via kernel mixed effects model

  • Shim, Joo-Yong;Kim, Tae-Yoon;Lee, Sang-Yeol;Hwa, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.445-452
    • /
    • 2009
  • Credibility models are actuarial tools to distribute premiums fairly among a heterogeneous group of policyholders. Many existing credibility models can be expressed as special cases of linear mixed effects models. In this paper we propose a nonlinear credibility regression model by reforming the linear mixed effects model through kernel machine. The proposed model can be seen as prediction method applicable in any setting where repeated measures are made for subjects with different risk levels. Experimental results are then presented which indicate the performance of the proposed estimating procedure.

  • PDF