• 제목/요약/키워드: linear isotherm

검색결과 74건 처리시간 0.025초

A Study on the Fixed-bed Adsorption of Heavy Metal Ions over Chitosan Bead (키토산 비드에 의한 중금속 이온의 고정층 흡착에 관한 연구)

  • Chung, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • 제10권1호
    • /
    • pp.166-172
    • /
    • 1999
  • Fixed-bed adsorption of metal ions on chitosan bead was studied to remove heavy metal ions in waste water. Chitin was extracted from carb shell and chitosan was prepared by deacetylation of the chitin. The chitosan in bead was used as an adsorbent for heavy metal ions. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual metal ion ($Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$) on chitosan bead. Adsorption strength of metal ions decreased in the order of $Cu^{2+}$>$Co^{2+}$>$Ni^{2+}$ ion. Breakthrough curves of single and multicomponent adsorption for metal ions were obtained from the experimental results of fixed-bed adsorption. The breakthrough curves were analyzed by simulation with fixed-bed adsorption equation based on LDFA (linear driving force approximation) adopted LAS (ideal adsorbed solution) theory which can predict multi-component adsorption isotherm from individual adsorption isotherm. The behavior of fixed bed adsorption for single and multi-component system could be nicely simulated by the equation.

  • PDF

Sorption and Diffusion of Carbon Dioxide in Polystyrene Membrane (폴리스티렌 막에서 $CO_2$의 수착과 확산)

  • Kim, You-Whan;Cho, Du-Hyun;Bae, Seong-Youl;Kumaawa, Hidehiro
    • Membrane Journal
    • /
    • 제3권2호
    • /
    • pp.79-82
    • /
    • 1993
  • The sorption equilibria and permeabilities for $CO_2$ in a homogeneous membrane of polystyrene with the glass transition temperature of $95^{\circ}C$ were measured at a temperature of $60^{\circ}C$ and gas pressures up to 1.6 MPa and 2.5 MPa, respectively. The sorption isotherm had the form af dual-mode sorption model at low gas pressures, but became linear at pressures above 1.3 MPa. The linear portion of the isotherm extrapolated to the origin. The pressure dependence of the rnean permeability coefficient deviated upward from the dualsrhode mobility model prediction. It was found that the glass transition was brought out by the plasticization action of sotbed $CO_2$ at a gas pressure of 1.3 MPa from the sorption isotherm. And this result was consistent with an increase in the mean permeability coefficient with applied gas pressure.

  • PDF

A Study on Monitoring for Process Parameters Using Isotherm Radii (등온선 반경을 이용한 공정변수 모니터링에 관한 연구)

  • Kim, Ill-Soo;Chon, Kwang-Suk;Son, Joon-Sik;Seo, Joo-Hwan;Kim, Hak-Hyoung;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.

Removal of hexavalent chromium Cr (VI) by adsorption in blended lateritic soil

  • Sunil, B.M.;Faziludeen, Saifiya
    • Advances in environmental research
    • /
    • 제4권3호
    • /
    • pp.197-210
    • /
    • 2015
  • Hexavalent chromium [Cr (VI)] adsorption on lateritic soil and lateritic soil blended with black cotton (BC) soil, marine clay and bentonite clay were studied in the laboratory using batch adsorption techniques. In the present investigation the natural laterite soil was blended with 10%, 20% and 30% BC soil, marine clay and bentonite clay separately. The interactions on test soils have been studied with respect to the linear, Freundlich and Langmuir isotherms. The linear isotherm parameter, Freundlich and Langmuir isotherm parameters were determined from the batch adsorption tests. The adsorption of Cr (VI) on natural laterite soil and blended laterite soil was determined using double beam spectrophotometer. The distribution coefficients obtained were 1.251, 1.359 and 2.622 L/kg for lateritic soil blended with 10%, 20% and 30% BC soil; 5.396, 12.973 and 48.641 L/kg for lateritic soil blended with marine clay and 5.093, 8.148 and 12.179 L/kg for lateritic soil blended with bentonite clay respectively. The experimental data fitted well to the Langmuir model as observed from the higher value of correlation coefficient. Soil pH and iron content in soil(s) has greater influence on Cr (VI) adsorption. From the study it is concluded that laterite soil can be blended with clayey soils for removing Cr (VI) by adsorption.

Study of new adsorption isotherm model and kinetics of dissolved organic carbon in synthetic wastewater by granular activated carbon (입상활성탄에 의한 합성폐수의 용존유기물질의 새로운 흡착등온 모델 및 운동학적 흡착 연구)

  • Kim, Seoung-Hyun;Shin, Sunghoon;Kim, Jinhyuk;Woo, Dalsik;Lee, Hosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제15권4호
    • /
    • pp.2029-2035
    • /
    • 2014
  • In this study, we conducted the adsorption equilibrium and batch experiments of dissolved organic carbon (DOC) in the wastewater by granular activated carbon (GAC). The components of organic compound were Beef extract (1.8 mg/L), Peptone (2.7 mg/L), Humic acid (4.2 mg/L), Tannic acid (4.2 mg/L), Sodium lignin sulfonate (2.4 mg/L), Sodium lauryle sulfate (0.94 mg/L), Arabic gum powder (4.7 mg/L), Arabic acid (polysaccharide) (5.0 mg/L), $(NH_4)_2SO_4$ (7.1 mg/L), $K_2HPO_4$ (7.0 mg/L), $NH_4HCO_3$ (19.8 mg/L), $MgSO_4{\cdot}7H_2O$ (0.71 mg/L), The adsorption characteristics of DOC in synthetic wastewater was described using the mathematical model through a series of isotherm and batch experiments. It showed that there was linear adsorption region in the low DOC concentration (0~2.5 mg/L) and favorable adsorption region in high concentration (2.5~6 mg/L). The synthetic wastewater used was prepared using known quantities of organic and/or inorganic compounds. Adsorption modelling isotherms were predicted by the Freundlich, Langmuir, Sips and hybrid isotherm equations. Especially, hybrid isotherm of Linear and Sips equation was a good adsorption equilibrium in the region of the both the low concentration and high concentration. In applying carbon adsorption for treating water and wastewater, hybrid adsorption equation plus linear equation with Sips equation will be a good new adsorption equilibrium model. Linear driving force approximation (LDFA) kinetic equation with Hybrid (linear+Sips) adsorption isotherm model was successfully applied to predict the adsorption kinetics data in various GAC adsorbent amounts.

A Feasibility Study on the Development of Admixed Liner Using Gibbsite and Clay (Gibbsite 를 이용한 대체 차수재 개발 타당성 연구 - Batch Test를 통한 흡착실험을 중심으로 -)

  • 현재혁;이상현;이지훈
    • The Journal of Engineering Geology
    • /
    • 제5권1호
    • /
    • pp.75-93
    • /
    • 1995
  • This study investigates the adsorption capacity of the gibbsite and the clay on the development of admixed liner. The gibbsite is produced as a by-product in the pretreatment process for cleaning and coloring of Alurninurn sash. From the study, following conclusions were obtained: 1) The adsorption of metals such as Cu(II), Cd(II), and Ni(II) and phenol on gibbsite and l:entonite was equilibrated rather quickly(12 ~48 hrs ). 2) The rate and extent of adsorption is a function of surface area the adsorbent having. 3) The Larigmuir isotherm is found to be more suitable than Freundlich isotherm for the adsorption analysis of heavy metals on gibbsite and bentonite. 4) In case of phenol, Freundlich isotherm, whose N value is close to 1, i.e., close to linear isotherm, is more fit to describe the adsorption on gibbsite and bentonite. 5) The amount of metals and phenol adsorbed is found to be in the following order : Adsorbent : $2{\mu}m-Al(OH)_3$ > Mixed Solid > $12{\mu}m-Al(OH)_3$ > Na-Bentonite > $30{\mu}m-Al(OH)_3$

  • PDF

Nonlinear Adsorption Isotherm of Single and Multi-Components of 2'-Deoxyribonucleosides (2'-deoxyribonucleosides의 단일 및 다성분계의 비선형 흡착평형식)

  • Jin, Long Mei;Han, Soon Koo;Choi, Dae-Ki;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.230-235
    • /
    • 2005
  • Reversed-phase high-performance liquid chromatography (RP-HPLC) was used to determine the equilibrium isotherm of single and multi-components of dUrd(2'-deoxyuridine), dGuo(2'-deoxyguanosine), and dAdo(2'-deoxyadenosine) of 2'-deoxyribonucleosides by dynamic method. The composition of mobile phase was 90/10 vol.% (water/MeOH). With an increase in the injection volumes, the retention times were shorter and the peak shapes were triangle-shaped, so Langmuir-type isotherm was assumed. The Langmuir adsorption parameters were estimated by PIM (pulsed-input method), and the competitive Langmuir adsorption isotherm was further utilized. For the sample of the dUrd and dGuo whose retention times were relatively short, the agreement of between the calculated value and experimental data was fairly good in both single and multi-components, but for the dAdo, the last eluting component, some deviations were caused by non-linear and non-ideal properties.

Transport behavior of a surfactant tracer(CPC) with Langmuir type adsorption isotherm on NAPL-water interface in a homogeneous porous medium (NAPL-물 계면에서 Langmuir형 흡착특성을 보이는 계면추적자(CPC)의 다공성 균질매질내 유동특성)

  • 김헌기;문희수;이상훈
    • Journal of Soil and Groundwater Environment
    • /
    • 제6권2호
    • /
    • pp.3-13
    • /
    • 2001
  • It has been known that nonlinear characteristics of sorption affect the transport behavior of water soluble pollutants in soils. However detailed experimental studies have not been performed to verify the effect of non-linearity of adsorption isotherm on transport of chemicals in porous media. In this research, the distortion of breakthrough curves of a cationic surfactant (cetylpyridinium chloride, CPC) in a engineered stainless steel column packed with glass beads were investigated. Glass beads with about 110 $\mu\textrm{m}$diameter coated with a thin n-decane film were used as the media providing the sorption surface for CPC. The CPC adsorption isotherm on the surface of n-decane from aqueous solution was a typical Langmuir type. The breakthrough curve of CPC using step Input showed a late breakthrough on the front side and early breakthrough on the back side accordance to the shape of the isotherm. The retardation factor of CPC was found to be a strong function of the input concentration, which also a manifestation of the non-linearity of the isotherm. The retardation factors for the CPC with step input agreed with those of pulse input that the maximum concentrations are controlled to be the same as the step input concentrations. This results support the validity of the unproven field practices of using hydrogeotracers with non-linear adsorption isotherms to determine the hydrogeological parameters, e.g., NAPL saturation, air-water or NAPL-water interfacial areas.

  • PDF

DEVELOPMENT OF ADSORBENT USING BYPRODUCTS FROM KOREAN MEDICINE FOR REMOVING HEAVY METALS

  • Kim, S.W.;Lim, J.L.
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Most of the herb residue producing from oriental medical clinics(OMC) and hospitals(OMH) is wasted in Korea. To develop of adsorbent for removing heavy metal from wastewater, the various pre-treatment methods of the herb residue were evaluated by potentiometric titration, Freundlich isotherm adsorption test and the kinetic adsorption test. The herb residue was pre-treated for increasing the adsorption capacity by cleaning with distilled water, 0.1 N HCl and 0.1 N NaOH and by heating at $370^{\circ}C$ for 30 min. It showed a typical weak acid-weak base titration curve and a short pH break like commercial activated carbon during photentiometric titration of pre-treated herb residue. The log-log plots in the Freundlich isotherm test were linear on the herb residue pre-treated with NaOH or HCl like commercial activated carbon. The adsorption capacity(qe) in the Freundlich isotherm test for $Cr^{6+}$ was 1.5 times higher in the pre-treated herb residue with HCl than in activated carbon. On the other hand the herb residue pre-treated with NaOH showed the good adsorption capacities for $Pb^{2+}$, $Cu^{2+}$ and $Cd^{2+}$ even though those adsorption capacities were lower than that of activated carbon. In kinetic test, most of heavy metals removed within the first 10 min of contact and then approached to equilibrium with increasing contact time. The removal rate of heavy metals increased with an increase of the amount of adsorbent. Likewise, the removal rates of heavy metals were higher in the herb residue pre-treated with NaOH than in that pre-treated with HCl. The adsorption preference of herb residues pre-treated with NaOH or HCl was $Pb^{2+}>Cu^{2+}$ or $Cd^{2+}>Cr^{6+}$ in the order. Conclusively, the herb residue can be used as an alternative adsorbent for the removal of heavy metals depending on pr-treatment methods.

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.