• Title/Summary/Keyword: linear isolator

Search Result 41, Processing Time 0.025 seconds

Reduction of the Seismetic rRspocses by Using the Modified Hysteretic Bi-Linear Model of the Seismic Isolator (수정히스테리틱 Bi-Linear 면진베어린 모델을 사용한 지진응답감소)

  • Koo, G.H.;Lee, J.H.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.127-134
    • /
    • 1996
  • In general, seismic isolators which are made of laminated rubber and shim plate have characteristics of complex hysteretic behavior. When shear deformation of the seismic isolator is small, the isolator hassimple hysteretic almost bi-linear behabior. But on large shear deformation hardening effects may occur. This paper proposes a moldeling method of the seimic isolator with modified hysteretic bi-linear model which can consider the hardening effects. From the results of the seismic analyses of the isolated system it is shown that the responses are singificantly reduced compared with those of the non-isolated system. The modified hysteretic bi-linear model of the isolator gives larger ZPA(zero period acceleration) than those of the simple hysteretic bi-linear model and the equivalunt spring-damper model.

Design Parameter Study on the Isolation Performance of the HSLDS Magnetic Vibration Isolator (HSLDS 마그네틱 진동절연체의 절연성능에 대한 설계 파라미터 분석)

  • Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.473-477
    • /
    • 2009
  • In general, the softer the stiffness of a linear vibration isolator the better the performance of isolation can be achieved. However, the stiffness of the isolator cannot be made too soft because it needs a sufficient stiffness to hold the load. This is the most critical limitation of a linear vibration isolator. Recently, a HSLDS (High-Static-Low-Dynamic-Stiffness) magnetic vibration isolator was proposed to overcome this fundamental limitation. The suggested isolator utilizes two pairs of attracting magnets that that introduces negative stiffness. Previously, this new type of vibration isolator was merely introduced and showed a possibility of practical use. In this paper, detailed dynamics of the HSLDS magnetic isolator are studied using computer simulations. Then, the isolation performance is examined for various design parameters to aid the practical use.

  • PDF

Design Parameter Study on the Isolation Performance of the HSLDS Magnetic Vibration Isolator (HSLDS 마그네틱 진동절연체의 절연성능에 대한 설계 파라미터 분석)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.92-97
    • /
    • 2010
  • In general, the softer the stiffness of a linear vibration isolator the better the performance of isolation can be achieved. However, the stiffness of the isolator cannot be made too soft because it needs a sufficient stiffness to hold the load. This is the most critical limitation of a linear vibration isolator. Recently, a HSLDS(high-static-low-dynamic-stiffness) magnetic vibration isolator was proposed to overcome this fundamental limitation. The suggested isolator utilizes two pairs of attracting magnets that introduces negative stiffness. Previously, this new type of vibration isolator was merely introduced and showed a possibility of practical use. In this paper, detailed dynamics of the HSLDS magnetic isolator are studied using computer simulations. Then, the isolation performance is examined for various design parameters to aid the practical use.

Analysis of the operating characteristics of a birefringent optical isolator (복굴절이 있는 광아이솔레이터의 동작 특성 분석)

  • 조상연;강현서;이경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2731-2737
    • /
    • 1996
  • The effect of the birefringence existing in the Faraday rotator on the isolation and transmission properties of the isolator was investigated. To maintain isolation of 50dB, both the deviation of the transmission angle between input and output polarizers and the deviation of the Faraday ratation angle are permitted to .+-.0.18.deg. for birefringenceless isolator and to .+-.0.09.deg. for birefringent isolator. This means that the isolator possessing linear birefringence of 0.5.deg. requires 505 more accurage adjustment than that of no birefringence. We also simulated the characteristics of wavelength dependence for both the virefringent isolator and the birefringencelless isolator. It is also found that formward transmission loss doesn't varing much with small birefringence.

  • PDF

Experimental Evaluation of the Performance of the HSLDS Magnetic Vibration Isolator with Consideration of the Design Parameter (설계 파라미터를 고려한 HSLDS 마그네틱 진동절연체의 실험적 성능평가)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • The isolation performance of a linear vibration isolator is limited to the ratio of stiffness to mass it supports. The stiffness of the isolator must be large enough to hold the weight. This results in the deterioration of the isolation performance. Recently, to overcome this fundamental limitation, the HSLDS(high-static-low-dynamic-stiffness) magnetic vibration isolator was introduced and its isolation characteristic was investigated theoretically. In this paper, the isolation performance of the HSLDS magnetic isolator is examined experimentally. Considerable amount of experiments are performed by carefully considering nonlinear characteristics. The experimental results verify the practical usability promisingly and agree with the theoretical studies, i.e. its performance is largely dependent on the key design parameter.

Topology Optimization of Passive Shock Isolator with Application to Ballistic Shock (발사충격을 고려한 수동충격저감기의 위상최적설계)

  • Wang, Se-Myung;Lim, Kook-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.406-410
    • /
    • 2006
  • Topology optimization of improved passive shock isolator by controlling its force-deflection relation is proposed. And the final design which is optimized using topology optimization is obtained using shape optimization. The proposed methods are applied to a numerical example using two dimensional-axisymmetric condition. And the performance of finally optimized design is verified through transient analysis using LS-DYNA. The ballistic shock isolator model is developed as a result of topology optimization. The optimized design has more improved shock absorbing capability comparing to the linear shock isolator by about 20%.

  • PDF

Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System (비선형 진동절연 시스템의 근사적 응답을 구하는 방법)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

The study of PTFE isolator equipped to small satellite launch vehicle to reduce the separation shock (소형 인공위성 발사체 충격저감용 PTFE(테프론) 소재 아이솔레이터 연구)

  • Jeong, Ho-Kyeong;Youn, Se-Hyun;Seo, Sang-Hyun;Jang, Young-Soon;Yi, Yeoung-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.358-362
    • /
    • 2006
  • Pyro-shock generally refers to the severe mechanical transients caused by the detonation of an ordnance device on a structure. Such device on a structure, including linear explosive, and point explosive are widely used to accomplish in-flight separation of structural elements on aerospace vehicle. And they are a significant cause of launch vehicle failures. The launch vehicle being developed in Korea also uses the explosive for separation events. In this paper, the isolator equipped to small satellite launch vehicle made of PTFE(Teflon) is developed to reduce the separation shock. The test to measure dynamic stiffness of PTFE isolator is performed. This test enables us to find the frequency range of PTFE isolator. And,, pyre-shock test using explosive to evaluate the performance of PTFE isolator is executed. from this study, the isolator conformed to frequency range and load requirement is developed using PTFE instead of rubber.

  • PDF

Modeling of a linear GMR Isolator Utilizing Spin Valves (스핀밸브를 이용한 선형 GMR 아이솔레이터의 모델링)

  • Park, S.;Jo, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.232-235
    • /
    • 2004
  • Linear GMR isolator which is profitable for transmitting analog signal was modeled and the output voltage and current in relation to the input current were investigated. GMR isolator modeling was divided into two parts, namely magnetic and electric parts. The flow chart of the modeling was drawn in which the MR curve of the spin valves were incorporated to obtain the electrical voltage output. For magnetic modeling, 3-dimensional model of planar coil was analyzed by FEM method to obtain the magnetic field strength corresponding to the input current. Coil efficiency of the planar coil having magnetic core layer was shown to have about 1.5 times larger than that of the coil without the magnetic core layer. The feedback coil current(output current) corresponding to the input coil current was calculated to be within ${\pm}$0.25 mA of the linear fitting function of I$\_$out/= I$\_$in/-5 mA. Also, the response time and output waveforms were obtained when the coil current was a rectangular waveform. The rise time and fall time was 6 ${\mu}\textrm{s}$, respectively when the slew rate of the op-amp was 0.3 V/${\mu}\textrm{s}$.

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.