• Title/Summary/Keyword: linear fracture mechanics

Search Result 211, Processing Time 0.025 seconds

An Analysis on Fracture Behavior of Aluminum Foil and Paper by Linear Elastic Fracture Mechanics (선형파괴역학에 의한 Aluminum Foil과 종이의 파괴거동 해석)

  • An, Deuk-Man;Ok, Young-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.159-164
    • /
    • 2000
  • The fracture behaviors of aluminum foils and sheet papers were analyzed on the basis of linear elastic fracture mechanics(LEFM). The fracture loads of the similarly shaped specimens were calculated by dimensional analysis. The actual fracture loads were measured using the simple tension equipment. The predicted fracture loads were compared with the experimental results.

  • PDF

A novel meso-mechanical model for concrete fracture

  • Ince, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.91-112
    • /
    • 2004
  • Concrete is a composite material and at meso-level, may be assumed to be composed of three phases: aggregate, mortar-matrix and aggregate-matrix interface. It is postulated herein that although non-linear material parameters are generally used to model this composite structure by finite element method, linear elastic fracture mechanics principles can be used for modelling at the meso level, if the properties of all three phases are known. For this reason, a novel meso-mechanical approach for concrete fracture which uses the composite material model with distributed-phase for elastic properties of phases and considers the size effect according to linear elastic fracture mechanics for strength properties of phases is presented in this paper. Consequently, the developed model needs two parameters such as compressive strength and maximum grain size of concrete. The model is applied to three most popular fracture mechanics approaches for concrete namely the two-parameter model, the effective crack model and the size effect model. It is concluded that the developed model well agrees with considered approaches.

Linear fracture envelopes for fatigue assessment of welds in bridges

  • Ghosh, A.;Oehlers, D.J.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.347-364
    • /
    • 1996
  • Presently welded components are designed using S/N curves which predict only the fatigue life of the component. In order to ascertain the condition of the weld at any intermediate period of its life inspection is carried out. If cracks are detected in a weld fracture mechanics is used to find their remaining life. A procedure for assessment is developed here that can be used to verify the condition of a weld before inspection is carried out to detect cracks. This simple method has been developed using linear fracture envelopes by combining S/N curves with linear elastic fracture mechanics.

Non-linear analysis of dealamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.97-111
    • /
    • 2017
  • The present paper reports an analytical study of delamination fracture in the Mixed Mode Flexure (MMF) functionally graded beam with considering the material non-linearity. The mechanical behavior of MMF beam is modeled by using a non-linear stress-strain relation. It is assumed that the material is functionally graded along the beam height. Fracture behavior is analyzed by the J-integral approach. Non-linear analytical solution is derived of the J-integral for a delamination located arbitrary along the beam height. The J-integral solution derived is verified by analyzing the strain energy release rate with considering the non-linear material behavior. The effects of material gradient, crack location along the beam height and material non-linearity on the fracture are evaluated. It is found that the J-integral value decreases with increasing the upper crack arm thickness. Concerning the influence of material gradient on the non-linear fracture, the analysis reveals that the J-integral value decreases with increasing the ratio of modulus of elasticity in the lower and upper edge of the beam. It is found also that non-linear material behavior leads to increase of the J-integral value. The present study contributes for the understanding of fracture in functionally graded beams that exhibit material non-linearity.

Mechanical characterization of a self-compacting polymer concrete called isobeton

  • Boudjellal, K.;Bouabaz, M.;Belachia, M.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.357-367
    • /
    • 2016
  • This paper illustrates an experimental study on a self compacting polymer concrete called isobeton made of polyurethane foam and expanded clay. Several experiments were conducted to characterize the physic-mechanical properties of the considered material. Application of the Linear Elastic Fracture Mechanics (LEFM) and determining the toughness of two isobetons based on Belgian and Italian clay, was conducted to determine the stress intensity factor $K_{IC}$ and the rate of releasing energy $G_{IC}$. The material considered was tested under static and dynamic loadings for two different samples with $10{\times}10{\times}40$ and $10{\times}15{\times}40cm$ dimensions. The result obtained by the application of the Linear Elastic Fracture Mechanics (LEFM) shows that is optimistic and fulfilled the physic-mechanical requirement of the study.

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

A Comparison of the Crack Plane Equilibrium Model for Elastic-Plastic Fracture Analysis with the Irwin's Plastic Zone Corrected LEFM (탄소성 파괴해석을 위한 크랙 평면 평형모형과 항복 선형 파괴역학과의 비교에 관한 연구)

  • Lee, Kyu-Yong;Smith, F.W.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 1984
  • It is well known that the application of linear elastic fracture mechanics is inadequate to solve the large deformation fracture failures which occurr in ductile manner because of the large scale yielding due to the severe stress concentration in the region adjacent to the crack tip. The authors have been evolved a fracture model, the crack plane equilibrium model, for this kinds of elastic-plastic fracture problems in the previous report. In this report, the crack plane equilibrium model was compared with the Irwin's plastic zone corrected linear elastic fracture mechanics through theoretical comparisons and experimental results to examine the validity of the crack plane equilibrium model as an available tool for nonlinear fracture analysis. Through this study, the main results were reached as follows; Irwin's plastic zone corrected linear elastic fracture mechanics could be applicable only for small scale yielding problems as expected while the crack plane equilibrium model valid as a fracture model for large deformation fracture failure. However, the followings should be considered for the more precise evaluations of CPE model; 1) It is necessary to test more specimens which contain small cracks in the range of 2a/W<0.1. 2) It is important to detect the crack initiation point during the fracture test for determining an accurate fracture load. 3) Effects of specimen thickness in the fracture process zone should be examined.

  • PDF

Fracture analysis of functionally graded beams with considering material non-linearity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.487-494
    • /
    • 2017
  • The present paper deals with a theoretical study of delamination fracture in the Crack Lap Shear (CLS) functionally graded beam configuration. The basic purpose is to analyze the fracture with taking into account the material non-linearity. The mechanical behavior of CLS was described by using a non-linear stress-strain relation. It was assumed that the material is functionally graded along the beam height. The fracture was analyzed by applying the J-integral approach. The curvature and neutral axis coordinate of CLS beam were derived in order to solve analytically the J-integral. The non-linear solution of J-integral obtained was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, crack location along the beam height and material non-linearity on fracture behavior were evaluated. The J-integral non-linear solution derived is very suitable for parametric studies of longitudinal fracture in the CLS beam. The results obtained can be used to optimize the functionally graded beam structure with respect to the fracture performance. The analytical approach developed in the present paper contributes for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.