• Title/Summary/Keyword: linear error equation

Search Result 265, Processing Time 0.039 seconds

Kalman Randomized Joint UKF Algorithm for Dual Estimation of States and Parameters in a Nonlinear System

  • Safarinejadian, Behrouz;Vafamand, Navid
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1212-1220
    • /
    • 2015
  • This article presents a new nonlinear joint (state and parameter) estimation algorithm based on fusion of Kalman filter and randomized unscented Kalman filter (UKF), called Kalman randomized joint UKF (KR-JUKF). It is assumed that the measurement equation is linear. The KRJUKF is suitable for time varying and severe nonlinear dynamics and does not have any systematic error. Finally, joint-EKF, dual-EKF, joint-UKF and KR-JUKF are applied to a CSTR with cooling jacket, in which production of propylene glycol happens and performance of KR-JUKF is evaluated.

Nonlinear Optimization Method for Multiple Image Registration (다수의 영상 특징점 정합을 위한 비선형 최적화 기법)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.634-639
    • /
    • 2012
  • In this paper, we propose nonlinear optimization method for feature matching from multiple view image. Typical solution of feature matching is by solving linear equation. However this solution has large error due to nonlinearity of image formation model. If typical nonlinear optimization method is used, complexity grows exponentially over the number of features. To make complexity lower, we use sparse Levenberg-Marquardt nonlinear optimization for matching of features over multiple view image.

Actuator Fault Diagnostic Algorithm based on Hopfield Network

  • Park, Tae-Geon;Ryu, Ji-Su;Hur, Hak-Bom;Ahn, In-Mo;Lee, Kee-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.211-217
    • /
    • 2000
  • A main contribution of this paper is the development of a Hopfield network-based algorithm for the fault diagnosis of the actuators in linear system with uncertainties. An unknown input decoupling approach is introduced to the design of an adaptive observer so that the observer is insensitive to uncertainties. As a result, the output observation error equation does not depend on the effect of uncertainties. Simultaneous energy minimization by the Hopfield network is used to minimize the least mean square of errors of errors of estimates of output variables. The Hopfield network provides an estimate of the gains of the actuators. When the system dynamics changes, identified gains go through a transient period and this period is used to detect faults. The proposed scheme is demonstrated through its application to a simulated second-order system.

  • PDF

Nonlinear Control using Stepwise Fuzzy Moving Sliding Surface (계단형 퍼지 이동 슬라이딩 평면을 이용한 비선형 제어)

  • 유병국;양근호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.153-156
    • /
    • 2003
  • This short paper suggests a control strategy using a stepwise fuzzy moving sliding surface. The moving surface is a Sugeno-type fuzzy system that has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as an output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. the proposed method reduces the reaching and tracking time and improves robustness. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

  • PDF

GPS Implementation for GIS Coverage Map (GPS 측량시스템을 이용한 GIS 커버리지 맵 구현)

  • 임삼성;노현호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.197-203
    • /
    • 1999
  • Depending on geographical features and error sources in the survey field, inaccurate data is inevitable in GPS kinematic survey for positioning with feature codes. In this study, the trimmed mean and the first order differential equation are used to develop an inaccurate positioning data detection algorithm, and a cubic spline curve and a linear polynomial are used to interpolate the inaccurate data. Based on interpolated data, a digital map for 30 km range of rural highway is produced and a corresponding GIS coverage map is obtained by analyzing and solving the problem associated with the map.

  • PDF

ON CLENSHAW-CURTIS SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRAL EQUATIONS

  • CHAOLAN, HUANG;CHUNHUA, FANG;JIANYU, WANG;ZHENGSU, WAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.983-993
    • /
    • 2022
  • The main purpose of this paper is to solve the second kind Volterra integral equations by Clenshaw-Curtis spectral collocation method. First of all, we can transform the integral interval from [-1, x] to [-1, 1] through a simple linear transformation, and discretize the integral term in the equation by Clenshaw-Curtis quadrature formula to obtain the collocation equations. Then we provide a rigorous error analysis for the proposed method. At last, several numerical example are used to verify the results of theoretical analysis.

STABILITYANALYSIS OF LINGUISTIC FUZZY MODEL SYSTEMS IN STATESPACE

  • Kim, Won C.;Woo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.953-955
    • /
    • 1993
  • In this paper we propose a new stability theorem and a robust stability condition for linguistic fuzzy model systems in state space. First we define a stability in linear sense. After representing the fuzzy model by a system with disturbances, A necessary and sufficient condition for the stability is derived. This condition is proved to be a sufficient condition of the fuzzy model. The Q in the Lyapunov equation is iteratively adjusted by an gradient-based algorithm to improve its stability test. Finally, stability robustness bounds of a system having modeling error is derived. An example is also included to show that the stability test is powerful.

  • PDF

Full Pose Measurement of a Robot by the Wire Parallel Mechanism (와이어 병렬 메카니즘에 의한 로봇의 완전 자세 측정)

  • Jeong, Jae Won;Kim, Soo Hyun;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.134-142
    • /
    • 1997
  • In this study, we proposed the wire parallel mechanism that can be used to measure a full pose of a robot. It is composed of six parallel links using wire. The position and orientation of the end effectorf of a robot are calculated using the length of wires which is measured by the encoder. The complex non- linear equations of the forward kinematics are solved by using a numerical method, and the unique solution is obtained from the geometric configuration of the device. The length error of the wire which occurs in static condition is compensated by the relational equation that considered longitudinal extension and defoection of the wire. Through this work, we known that the proposed device has a good accuracy( .+-. 0.01mm) in a large measuring region, so it can be used effectively in a callibration of a robot which required a low cost.

  • PDF

Camera Tracking Method based on Model with Multiple Planes (다수의 평면을 가지는 모델기반 카메라 추적방법)

  • Lee, In-Pyo;Nam, Bo-Dam;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.11 no.4
    • /
    • pp.143-149
    • /
    • 2011
  • This paper presents a novel camera tracking method based on model with multiple planes. The proposed algorithm detects QR code that is one of the most popular types of two-dimensional barcodes. A 3D model is imported from the detected QR code for augmented reality application. Based on the geometric property of the model, the vertices are detected and tracked using optical flow. A clipping algorithm is applied to identify each plane from model surfaces. The proposed method estimates the homography from coplanar feature correspondences, which is used to obtain the initial camera motion parameters. After deriving a linear equation from many feature points on the model and their 3D information, we employ DLT(Direct Linear Transform) to compute camera information. In the final step, the error of camera poses in every frame are minimized with local Bundle Adjustment algorithm in real-time.

Improvement of Non-linear Estimation Equation of Rainfall Intensity over the Korean Peninsula by using the Brightness Temperature of Satellite and Radar Reflectivity Data (기상위성 휘도온도와 기상레이더 반사도 자료를 이용한 한반도 영역의 강우강도 추정 비선형 관계식 개선)

  • Choi, Haklim;Seo, Jong-Jin;Bae, Juyeon;Kim, Sujin;Lee, Kwang-Mog
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.131-138
    • /
    • 2018
  • The purpose of this study is to improve the quantitative precipitation estimation method based on satellite brightness temperature. The non-linear equation for rainfall estimation is improved by analysing precipitation cases around the Korean peninsula in summer. Radar reflectivity is adopted the CAPPI 1.5 and CMAX composite fields that provided by the Korea Meteorological Agency (KMA). In addition, the satellite data are used infrared, water vapor and visible channel measured from meteorological imager sensor mounted on the Chollian satellite. The improved algorithm is compared with the results of the A-E method and CRR analytic function. POD, FAR and CSI are 0.67, 0.76 and 0.21, respectively. The MAE and RMSE are 2.49 and 6.18 mm/h. As the quantitative error was reduced in comparison to A-E and qualitative accuracy increased in compare with CRR, the disadvantage of both algorithms are complemented. The method of estimating precipitation through a relational expression can be used for short-term forecasting because of allowing precipitation estimation in a short time without going through complicated algorithms.