• 제목/요약/키워드: linear equations mode

검색결과 153건 처리시간 0.026초

Non-destructive estimation of soluble solids in the intact melon fruits from cross progeny by non-contact mode with a fiber optic probe

  • Ito, Hidekazu;Fukino, Nobuko
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1524-1524
    • /
    • 2001
  • A previous paper(Ito et al., 2000) has described the improvement of the standard error(SEC and SEP) of the predicted soluble solids(Brix) in a melon cultivar by non-contact mode with a fiber optic probe. Then we examined the immature and mature fruits. The objective of this study was to determine if non-contact mode could improve the standard error of the predicted Brix of matured melon fruits from cross progeny as well as the contact mode(usual method). The optical absorption spectrum was measured using a NIR Systems model 6500 spectrophotometer. A commercial spectral program(NSAS ver. 3.27) was used for multiple linear regression analysis. Absorbances of 902 and in the vicinity of 877 nm were included as the independent variables in both multiple regression equations. These wavelengths are key wavelengths for non-destructive Brix determination. When the results for the contact mode and non-contact mode are compared, the latter mode improved the former standard error(SEP and RMS).

  • PDF

슬라이딩 모드를 이용한 다관절 매니퓰레이터의 다입력 실시간 제어에 관한 연구 (A study on a multi-input time control of multi-joint manipulator using sliding mode)

  • 이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.652-657
    • /
    • 1992
  • This paper presents to accomplish successfully a multi-input real time control by applying control hierarchy for sliding mode of multi-joint manipulators whose nonlinear terms are regarded as disturbances. We- could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that nonlinear terms, which are Inertia term, gravity force term, Coriolis force term and centrifugal force term, are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode of multi-input system. We proposed a new control input algorithm in order to decrease chattering by changing control input according as effect of disturbance if a control response become within allowance error range. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by time delay of calculation and to carry out real time control.

  • PDF

슬라이딩 모드를 이용한 견실 최적 제어기 설계 (Design of Robust, Optimal Controller using Sliding Mode)

  • 변지영;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

Mode I Field Intensity Factors of Infinitely Long Strip in Piezoelectric Media

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.845-850
    • /
    • 2000
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith crack under in-plane normal loading within the framework of linear piezoelectricity. The potential theory method and Fourier transforms are used to reduce the problem to the solution of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the field intensity factors are obtained, and the influences of the electric fields for PZT-6B piezoelectric ceramic are discussed.

  • PDF

Continuous hitting by a flexible link hammer with neural networks generating input pattern

  • Hitaka, Yoshikazu;Izumi, Teruyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.721-724
    • /
    • 1994
  • This paper proposes a continuous hitting by a flexible link hammer. This hammer system is used only the first mode of vibration for a desired hitting. The input of the hammer driver for a continuous hitting is obtained from numerical solutions of two sets of non-linear simultaneous equations which satisfy the hitting conditions. Being too complicated, these numerical calculations are not useful for online processing. Therefore, the multi-layered neural networks are applied to the generation of the input patterns of the hammer driver. The trained network outputs agree well to the numerical solutions.

  • PDF

The effect of sweep angle on the limit cycle oscillations of aircraft wings

  • Eken, Seher;Kaya, Metin Orhan
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.199-215
    • /
    • 2015
  • This study focuses on the limit cycle oscillations (LCOs) of cantilever swept-back wings containing a cubic nonlinearity in an incompressible flow. The governing aeroelastic equations of two degrees-of-freedom swept wings are derived through applying the strip theory and unsteady aerodynamics. In order to apply strip theory, mode shapes of the cantilever beam are used. The harmonic balance method is used to calculate the frequencies of LCOs. Linear flutter analysis is conducted for several values of sweep angles to obtain the flutter boundaries.

집성재(集成材)의 혼합모드 하중시 파괴(破壞) 기준(基準)에 관한 연구(硏究) (Studies on Criterion for Mixed Mode Fracture in Glulam)

  • 이지용;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권2호
    • /
    • pp.15-22
    • /
    • 1993
  • This study was carried out to investigate the fracture criterion of glulam. The mixed mode fracture of glulam was investigated by means of single edge notched specimens with various crack inclination in the longitudinal-radial plane. While fracture of wood is not completely understood, the study on linear-elastic fracture mechanics is a rational and valuable tool for studying the strength behavior of glulam. The results are summarized as follows : 1. Glue line has no effect on fracture strength. 2. There is a definite interaction between fracture toughness $K_I$ and $K_{II}$ during the mixed mode fracture of glulam. Several criterions for mixed mode failure were compared. The criterion was expressed in the following form: $(\frac{K_I}{K_{IC}})^2+(\frac{K_{II}}{K_{IIC}})^2=1$ 3. As crack inclination increases, $K_{IC}$ value and $K_{IIC}$ value decreases. The equations relating crack angle to $K_{IC}$ and $K_{IIC}$, respectively, were obtained as follows; $K_{IC}$ = -77.42${\gamma}$+153.72 ($R^2$ = 0.78) $K_{IIC}$ = -9.17${\gamma}$+34.90 ($R^2$ = 0.48)

  • PDF

기준 좌표계에 따른 탄성체의 일반화 파랑 하중 및 응답에 대한 연구 (Investigation on the Generalized Hydrodynamic Force and Response of a Flexible Body at Different Reference Coordinate System)

  • 허경욱;최윤락
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.348-357
    • /
    • 2021
  • In this paper, the generalized hydrodynamic force and response of a flexible body are calculated at different reference coordinate systems. We generalize the equation of motion for a flexible body by using the conservation of momentum (Mei et al., 2005). To obtain the equations in the generalized mode, two different reference coordinates are adopted. The first is the body-fixed coordinate system by a rigid body motion. The other is the inertial coordinate system which has been adopted for the analysis. Using the perturbation scheme in the weakly-nonlinear assumption, the equations of motion are expanded up to second-order quantities and several second-order forces are obtained. Numerical tests are conducted for the flexible barge model in head waves and the vertical bending is only considered in the hydroelastic responses. The results show that the linear response does not have the difference between the two formulations. On the other hand, second-order quantities have different values for which the rigid body motion is relatively large. However, the total summation of second-order quantities has not shown a large difference at each reference coordinate system.

직사각형 평판의 비선형 진동 (Non-linear Vibration of Rectangular Plates)

  • Chang, Seo-Il;Lee, Jang-Moo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.35-39
    • /
    • 1994
  • One of the important characteristics of the response of nonlinear systems is the existence of subharmonic resonances. When some conditions in parameter space are satisfied. It is possible even in the presence of damping for a periodically excited nonlinear system to possess a response which is the combination of a contribution at the excitation frequency and a component at the system natural frequency. The system natural frequency being a submultiple of the excitation frequency implies that the resulting response is a subharmonic oscillation. In general, there also co-exists, for the system, a response at the excitation frequency, and initial conditions determine which of the steady-state responses is achieved in an experiment or a numerical simulation. In single-degree-of-freedom systems with harmonic excitation, depending on the type of the nonlinearity, e.g., cubic or quadratic the frequency of subharmonic response is respectively, one-third or one-half of that of the excitation frequency. Although subharmonic resonance is one of the principal characteristics of a nonlinear system the subharmonic responses of structures in the presence of internal resonances have been studied very rarely. In this work, we consider subharmonic responses in the two-mode approximation of the plate equations. It is assumed that the two modes are in one-to-one internal resonance. Constant and periodic steady-state solutions of the averaged equations are studied. Finally, the results of direct time integration of the original equations of motion are presented and compared with those obtained from the averaged equations.

  • PDF

미분변환법을 이용한 회전외팔보의 자유진동해석 (Free Vibration Analysis of a Rotating Cantilever Beam by Using Differential Transformation Method)

  • 신영재;지영철;윤종학;유영찬
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.331-337
    • /
    • 2007
  • Rotating cantilever beams can be found in several practical engineering applications such as turbine blades and helicopter rotor blades. For reliable and economic design, it is necessary to estimate the dynamic characteristics of those structures accurately and efficiently since significant variation of dynamic characteristics resulted from rotational motion of the structures. Recently, Differential Transformation Method(DTM) was proposed by Zhou. This method has been applied to fluid dynamics and vibration problems, and has shown accuracy, efficiency and convenience in solving differential equations. The purpose of this study, the free vibration analysis of a rotating cantilever beam, is to seek for the reliable property of DTM and confidence in the results obtained by this method by comparing the results with that of finite element method applied to linear partial differential equations. In particular, this study is worked by supposing optional T-function values because the equations governing chordwise motion are based on two differential equations coupled with each other. This study also shows mode shapes of rotating cantilever beams for various rotating speeds.