• Title/Summary/Keyword: linear equations mode

Search Result 153, Processing Time 0.021 seconds

Sliding Mode Control of Three-Phase Four-Leg Inverters via State Feedback

  • Yang, Long-Yue;Liu, Jian-Hua;Wang, Chong-Lin;Du, Gui-Fu
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1028-1037
    • /
    • 2014
  • To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of the proposed strategy is verified by conducting simulations and experiments.

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes (운전모드에 따른 회전축계의 동적거동)

  • Kim, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.

Bending Vibration of Rotating Cantilever Beams (회전 외팔보의 굽힘 진동해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.891-898
    • /
    • 1992
  • When catilever beams rotate about axes perpendicular to the underformed beam's longitudinal axis, their bending stiffnesses change due to the stretching caused by centrifugal inertia forces. Such phenomena result in variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the lateral motion of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the lateral motion of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes due to rotation. This technique is simpler and more consistent than other conventional techniques which are commonly used in the literature.

Theoretical Flow Instability of the Karman Boundary Layer

  • Hwang, Young-Kyu;Lee, Yun-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.358-368
    • /
    • 2000
  • The hydrodynamic stability of the Karman boundary-layer flow due to a rotating disk has been numerically investigated for moving disturbance waves. The disturbed flow over a rotating disk can lead to transition at much lower Re than that of the well-known Type I instability mode. This early transition is due to the excitation of the Type II instability mode of moving disturbances. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The reformulated stability equations are slightly different with the previous ones. However, the present neutral stability results are considerably different with the previously known ones. It is found that the flow is always stable for a disturbance whose dimensionless wave number k is greater than 0.75.

  • PDF

A Study on Oscillation Analysis of Linear Stepping Motor (선형 스텝핑 전동기의 진동 해석에 관한 연구)

  • Lee, S.H.;Jung, D.Y.;Kang, I.S.;Jang, H.;Kwon, M.S.;Jang, S.H.;Oh, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.154-156
    • /
    • 1999
  • A Linear Stepping Motor(LSM) can operate open loop control mode similarly to a rotary stepping motor. The linear motion without any mechanical linkage in the LSM results in several advantages for precise positioning actuators. However, to realize the more stable and higher speed control without hunting, it is necessary to derive an equivalent circuit to explain the steady-state and transisent characteristics in order to find an adequate control rule for high performance control of the LSM. In this paper, magnetic equivalent circuit is obtained, based on the structure of the LSM, and then the electric equivalent circuit of the LSM is derived by solving equations for the magnetic equivalent circuit. The 1-step response characteristic of the LSM is analyzed by the ACSL with the voltage equations, the force equations, the force equations and the kinetic equation.

  • PDF

Deployment or Retraction of Beam with Large Rotational Motion (대각 선회하는 보의 전개 및 수납)

  • 김상원;김지환
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.111-117
    • /
    • 2001
  • Present work deals with a study on the deployment or retraction of cantilever beam that includes the rigid-body motion of large displacement of beam through the translational and rotational motions in 2-dimensional plane. The equations of motion are derived with respect to non-Cartesian coordinate system. In the formulation of equations of motion, shear deformations and geometrically non-linear effect are included. An assumed mode method is applied and numerical convergence characteristics are studied also. Types of motion of the moving beam are assumed to be classified as‘slow’or‘fast’motion, and the dynamic characteristics are investigated.

  • PDF

Eigenmode of Anisotropic Planar Waveguide

  • Kweon, Gyeong-Il;Hwang-bo, Seung;Kim, Cheol-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.137-146
    • /
    • 2004
  • A new method of obtaining the eigenmode of an anisotropic planar waveguide is studied. The planar waveguide can be composed of an arbitrary number of isotropic or uniaxially anisotropic layers, provided all the optical axes arc lying in the incidence plane. Since the equation of motion for the TE mode is not different from that for the TE mode in an isotropic planar waveguide, only the equation of motion for the TM mode is of any concern. For this kind of device structure, the Maxwell's equations can be solved for one component of the electric field and one component of the magnetic field. The resulting coupled set of equations is linear in the propagation constant and the eigenmode can be easily obtained using canned numerical routines.

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.