• Title/Summary/Keyword: linear encoder

Search Result 114, Processing Time 0.033 seconds

Advanced Method for an Initial Pole Position Estimation of a PMLSM (PMLSM의 개선된 초기 자극위치 추정방법)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.316-320
    • /
    • 2004
  • This paper presents an advanced method for an initial pole position estimation of a PMLSM (Permanent Magnet Linear Synchronous Motor) that has an incremental encoder for servo applications but does not have Hall sensors as a magnetic pole sensor. The proposed algorithm finds either of two zero force positions and then the correct d-axis by appropriately using the secant method as a numerical method. It only requires the tuned current controller and the relative position information and so it can be simply applicable to a rotary PMSM. The experimental results show the validity of the proposed method with respect to accurate pole position estimation under the minimal moving distance during estimation process.

  • PDF

Speed control and stability of 3-phase induction motor with DPLL (DPLL에 의한 삼상유도전동기의 속도제어 및 안정도에 관한 연구)

  • 박민호;현동석
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.717-727
    • /
    • 1981
  • The phase-locked loop technique developed in the 1930's has many advantages when applied to speed control. The speed control and analysis of a three phase induction motor using the PLL are described in this paper. In this system, the phase frequency detector (PFD) compares the actual motor speed from the pulses received from a shaft encoder and desired speed, and the difference adjusts the frequency of the inverter that feeds the motor, and excellent speed regulation in the order of 0.035(%) has been-obtained. A linear continuous model of the drive is developed and system response is analysed using conventional root locus techniques. Various compensating filters and feedback signals are considered and the need for addition of derivative feedback is shown. A sampled data model is used to study the effects of discrete PFD output. Stability limitson speed are predicted. A drive was implimented and experimental results are presented to verify theoretical predictions.

  • PDF

Improving of Starting and Low Speed Performance of PMAC with Linear Encoder

  • Lee, Dong-Hee;Lee, Hwa-Seok;Park, Sung-Jun;Lee, Yang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.4-99
    • /
    • 2001
  • PMAC(Permanent magnet AC) motor drives are widely used in the industrial applications and home appliances because of high torque ratio, high efficiency and precise control performance. In recent years there has been a significant development of PMAC motors of various kinds. Improvements in the properties of permanent magnet materials have increased the viability of related types of motors. However, precise speed and position information is essential for the good control performance. In order to produce correct torque, the rotor flux position information from position sensor has to be identified. In this paper, a low cost position sensor is proposed for improving of starting and low speed performance of PMAC. The proposed position ...

  • PDF

A STUDY ON THE SPEED CONTROL OF AC SERVO MOTOR BY TIME CONSTANT

  • Kim, Pyoung-Ho;Park, In-June;Baek, Hyung-Lae;Chung, Byung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.325-329
    • /
    • 1998
  • This paper describes the controller for the improving speed control of the AC servo motor. The microprocessor provides an output to the difference in command. the servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal of the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant of linear acceleration/deceleration. We can know that optimal speed of machining center is 75msec in 30000mm/min and actually, 75msec is using on machining center. Finally experimental results prove excellent performance of this control system. This can be reduced error with more exact measure of actual speed. The system can be adaptable to CNC machine.

  • PDF

Initial Pole Position Estimation of a Magnetic Pole Sensorless Permanent Magnet Synchronous Motor (자극센서 없는 영구자석 동기전동기의 초기 자극위치 추정)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.127-131
    • /
    • 2003
  • This paper describes an initial pole position estimation method of a magnetic pole sensorless permanent magnet synchronous motor(PMSM) with an incremental encoder, The accurate initial pole position is estimated by using an efficient numerical method of Secant Method, which finds either of two zero torque/force positions and then the correct d-axis. It can be simply applicable to both rotary and linear PMSM because it only requires the tuned current controller and the relative position information. The experimental results show the validity of the proposed method with respect to highly accurate pole position estimation under the moderate moving distance and convergence time.

  • PDF

The development of a low cost servo motor system for the electrical actuators (전기식 액츄에이터를 위한 저가 서보 모터 시스템 개발)

  • Park Hee-Sung;Park Sung-Woo;Jang Sung-Soo;Jang Jin-Baek;Seong Se-jin
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.256-258
    • /
    • 2003
  • This paper deals with the development of the PMSM(Permanent magnet synchronous motor) system for the electrical actuator, For the high control performance and reliability of PMSM, accurate information of rotor position is essential. Most of PMSM for the position control use the encoder or resolver for the information of rotor position. But these are very expensive. So, in this paper, using of the magnetic and linear hall-effect sensor is proposed. It can reduce the cost of motor systems and get the good performance of PMSM control.

  • PDF

Algorithm for a Initial Pole Position Estimation of PMLSM (영구자석 선형동기전동기의 초기각 추정 알고리즘)

  • Lee Young-Ho;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.104-108
    • /
    • 2003
  • This paper explained algorithm for a initial pole position estimation of a permanent magnet linear synchronous motor(PMLSM). Generally this motor is considered initial pole position with a position sensor such as incremental encoder for the precise initial pole position estimation and high performance. But this is based on the principle that the initial pole position is accomplished by the PI controller using the maximum values of a position error generated by the new proposed two reference frames and also by using a rated force for input. the proposed algorithm does not utilize the general methods such as impedance ratio, EMF and using the magnetic saturation. In other words, this can be applied without respect to variety of the motor structure because of insensitivity to the motor parameters. In conclusion, simulation results are presented to confirm performance of initial pole position estimation method.

  • PDF

Measurement of Material Properties for Miniature Stamping (미세 스탬핑용 박판소재의 물성치 측정)

  • Kim Y.S.;Shim H.B.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.247-254
    • /
    • 2006
  • Rather than traditional manufacturing processes, miniature manufacturing processes usually require sophisticated equipments and characteristics of the processes of high cost and of low productivity. Contrarily, miniature stamping process can be realized in a low cost high productivity with relatively inexpensive equipments. In the meso scale, mechanical properties, especially work hardening characteristics, are discovered to be statically scattered and size dependent by intensive experimental and numerical investigations, which make the stamping process hard to apply to the miniature manufacturing. In this study, dual purpose experimental device that can be used for both miniature scale tensile test and miniature scale stamping by simple change of attachment has been developed. For the tensile test, the elongation has been measured with a combined use of a CCD camera and a linear encoder in order to account for the possibility of slippage between specimen and the grip and to ensure the accuracy of the measurement, while load has been measured with a load cell. To satisfy the required material properties for stamping, optimal annealing condition has been found by examining the microstructure of annealed specimen.

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

A Study on the Evalution of Rotational and Linear Movement Error in Thread Grinder (나사연삭기 회전전달 및 테이블 이송오차 평가에 관한 연구)

  • Park, Cheol-U;Yoon, Yeong-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 1996
  • It is one of the important causes that the precision of the thread grinder decide the machining errors of the ball screw. The approach described in this study demonstrates how the dominant causes of the inaccuracies in thread grinding system can be determined. To evaluate the machining error of thread grinder, rotary encoder is allocated to spindle shaft and master screw for measuring the rotational transfer error between spindle shaft and master screw and the laser measuring system is used for checking the movement error.

  • PDF