• Title/Summary/Keyword: linear elastic fracture mechanics

Search Result 140, Processing Time 0.024 seconds

Particle-based Numerical Simulation of Continuous Ice Breaking Process around Wedge-type Model Ship (쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션)

  • Ren, Di;Sin, Woo-Jin;Kim, Dong-Hyun;Park, Jong-Chun;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.23-34
    • /
    • 2020
  • This paper covers the development of prediction techniques for ice load on ice-breakers operating in continuous ice-breaking under level ice conditions using particle-based continuum mechanics. Ice is assumed to be a linear elastic material until the fracture occurs. The maximum normal stress theory is used for the criterion of fracture. The location of the crack can be expressed using a local scalar function consisting of the gradient of the first principal stress and the corresponding eigen-vector. This expression is used to determine the relative position of particle pair to the new crack. The Hertz contact model is introduced to consider the collisions between ice fragments and the collisions between hull and ice fragments. In order to verify the developed technique, the simulation results for the three-point bending problems of ice-specimen and the continuous ice-breaking problem around a wedge-type model ship with bow angle of 20° are compared with the experimental results carrying out at Korea Research Institute of Ships and Ocean Engineering (KRISO).

Establishment of An Optimal Process to Improve Structural Integrity by Investigating Effect of the Process Variables on Fatigue Lifetime of Steel-Sleeve Repair Welds in Buried Gas Pipeline (매설가스배관 강 슬리브 보수 용접부의 피로수명에 미치는 공정변수 영향 고찰을 통한 최적공정 수립)

  • Kim, Jong Sung;Lee, Cheol;Kim, Woo Sik;Kim, Ik Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1021-1033
    • /
    • 2017
  • In this study, an optimum process to improve structural integrity was established by investigating effect of the process variables on fatigue lifetime of steel-sleeve repair welds in buried gas pipeline. Residual stresses in the repair welds were derived through sequentially-coupled temperature-stress analysis using ABAQUS, which is a commercial finite element analysis program. In addition, variations of operating stresses were derived by finite element linear elastic stress analysis. Fatigue lifetimes of the steel-sleeve repair welds were evaluated by substituting the derived weld residual stresses and operating stress variations into the structural stress/fracture mechanics approach as input. Parametric study using finite element analysis and fatigue assessment for various repair welding process variables were carried out to investigate the effects of the process variables on the fatigue lifetime. Finally, based on the effects of the process variables on the fatigue lifetime, an optimal process to minimize the welding time and economic costs and to improve the fatigue lifetimes was derived.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Analysis of Patched Cylindrical Shells with Circumferential Through-Wall Cracks (원주방향 관통균열을 갖는 원통형 쉘 구조의 패치보강 해석)

  • Ahn, Jae-Seok;Kim, Young-Wook;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.411-418
    • /
    • 2012
  • In this study, behavior of unpatched and patched cylindrical shells with through-wall cracks has been estimated using numerical experiments, and patching effect of them has been investigated according to various patching parameters. To show credibility of numerical models considered, two ways such as h- and p-methods have been adopted. Also, domain integral method and virtual crack extension method have been considered to calculate energy release rates based on linear elastic fracture mechanics. For examples, the unpatched cylindrical shells with circumferential cracks under remote tension have firstly been analyzed to show the validity of finite element modeling with h-method or p-method, and then the results have been compared with literature values published. Next, the sensitive analysis of patch repaired problems in terms of thickness of patch and adhesive, shear modulus of adhesive, composite material type of patch, crack length, etc. has been carried out.

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

Extended Slip-Weakening Model and Inference of Rupture Velocity (Slip-Weakening 모델의 확장과 단층 파열속도의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.219-232
    • /
    • 2020
  • The slip-weakening model developed by Ohnaka and Yamashita is extended over the breakdown zone by equating the scaling relationships for the breakdown zone and the whole rupture area. For the extension, the study uses the relationship between rupture velocity and radiation efficiency, which was derived in the theory of linear elastic fracture mechanics, and the definition of fmax given in the specific barrier model proposed by Papageorgiou and Aki. The results clearly show that the extended scaling relationship is governed by the ratio of rupture velocity to S wave velocity, and the velocity ratio can be determined by the ratio of characteristic frequencies of a Fourier amplitude spectrum, which are corner frequency, fc, and source-controlled cut-off frequency, fmax, or vice versa. The derived relationship is tested by using the characteristic frequencies extracted from previous studies of more than 130 shallow crustal events (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan. Under the assumption of a dynamic similarity, the rupture velocity estimated from fmax/fc and the modified integral timescale give quite similar scale-dependence of the rupture area to that given by Kanamori and Anderson. Also, the results for large earthquakes show good agreement to the values from a kinematic inversion in previous studies. The test results also indicate the unavailability of the spectral self-similarity proposed by Aki because of the scale-dependent rupture velocity and the rupture velocity-dependent fmax/fc; however, the results do support the local similarity asserted by Ohnaka. It is also remarkable that the relationship between the rupture velocity and fmax/fc is quite similar to Kolmogorov's hypothesis on a similarity in the theory of isotropic turbulence.

Delamination Analysis of Orthotropic Laminated Plates Using Moving Nodal Modes (이동절점모드를 사용한 직교이방성 적층평판의 층간분리해석)

  • Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2012
  • In this study, the delamination analysis has been implemented to investigate the initiation and propagation of crack in composite laminates composed of orthotropic materials. A simple modeling was achieved by moving nodal technique without re-meshing work when crack propagation occurred. This paper aims at achieving two specific objectives. The first is to suggest a very simple modeling scheme compared with those applied to conventional h-FEM based models. To verify the performance of the proposed model, analysis of double cantilever beams with composite materials was implemented and then the results were compared with reference values in literatures. The second one is to investigate the behavior of interior delamination problems using the proposed model. To complete these objectives, the full-discrete-layer model based on Lobatto shape functions was considered and energy release rates were calculated using three-dimensional VCCT(virtual crack closure technique) based on linear elastic fracture mechanics.

Application of Ordinary Kriging Interpolation Method for p-Adaptive Finite Element Analysis of 2-D Cracked Plates (2차원 균열판의 p-적응적 유한요소해석을 위한 정규크리깅 보간법의 적용)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Park, Mi-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.429-440
    • /
    • 2006
  • This paper comprises two specific objectives. The first is to examine the applicability of ordinary kriging interpolation(OK) to the p-adaptivity of the finite element method that is based on variogram modeling. The second objective Is to present the adaptive procedure by the hierarchical p-refinement in conjunction with a posteriori error estimator using the modified S.P.R. (superconvergent patch recovery) method. The ordinary kriging method that is one of weighted interpolation techniques is applied to obtain the estimated exact solution from the stress data at the Gauss points. The weight factor is determined by experimental and theoretical variograms for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. In the p-refinement, the analytical domain has to be refined automatically to obtain an acceptable level of accuracy by increasing the p-level non-uniformly or selectively. To verify the performance of the modified S.P.R. method, the new error estimator based on limit value has been proposed. The validity of the proposed approach has been tested with the help of some benchmark problems of linear elastic fracture mechanics such as a centrally cracked panel, a single edged crack, and a double edged crack.