• Title/Summary/Keyword: linear elastic foundation

Search Result 125, Processing Time 0.019 seconds

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces

  • Mohammadzadeh, Behzad;Choi, Eunsoo;Kim, Dongkyun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.601-621
    • /
    • 2019
  • This study presents a comprehensive nonlinear dynamic approach to investigate the linear and nonlinear vibration of sandwich plates fabricated from functionally graded materials (FGMs) resting on an elastic foundation. Higher-order shear deformation theory and Hamilton's principle are employed to obtain governing equations. The Runge-Kutta method is employed together with the commercially available mathematical software MAPLE 14 to solve the set of nonlinear dynamic governing equations. Method validity is evaluated by comparing the results of this study and those of previous research. Good agreement is achieved. The effects of temperature change on frequencies are investigated considering various temperatures and various volume fraction index values, N. As the temperature increased, the plate frequency decreased, whereas with increasing N, the plate frequency increased. The effects of the side-to-thickness ratio, c/h, on natural frequencies were investigated. With increasing c/h, the frequencies increased nonlinearly. The effects of foundation stiffness on nonlinear vibration of the sandwich plate were also studied. Backbone curves presenting the variation of maximum displacement with respect to plate frequency are presented to provide insight into the nonlinear vibration and dynamic behavior of FGM sandwich plates.

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Multibody Elastic Contact Analysis by Modified Linear Programming (수정된 선형계획법을 이용한 다물체 탄성 접촉 문제 해석)

  • 이대희;전범준;최동훈;임장근;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • A general and efficient algorithm is proposed for the analyses of multibody elastic contact problems. It is presumed that there exists negligible friction between the bodies. It utilizes a simplex type algorithm with a modified entry rule and incoporates finite element method to obtain flexibility matrices for arbitrarily shaped bodies. The multibody contact problem of a vehicle support on an elastic foundation is considered first to show the effictiveness of the suggested algorithm. Its solution is compared favorably with the existing solution. A contact problem among inner race, rollers and outer race is analyzed and the distribution of load, rigid body movements and contact pressure distributions are obtained. The trend of contact characteristics is compared with that of the idealized Hertzian solutions for two separate two-body contact problems. The numerical results obtained by directly treating a multibody contact are believed to be more exact than the Hertzian solution for the idealized two separate two-body contact problems.

The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate

  • Boulefrakh, Laid;Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.161-178
    • /
    • 2019
  • In this research, a simple quasi 3D hyperbolic shear deformation model is employed for bending and dynamic behavior of functionally graded (FG) plates resting on visco-Pasternak foundations. The important feature of this theory is that, it includes the thickness stretching effect with considering only 4 unknowns, which less than what is used in the First Order Shear Deformation (FSDT) theory. The visco­Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The equations of motion for thick FG plates are obtained in the Hamilton principle. Analytical solutions for the bending and dynamic analysis are determined for simply supported plates resting on visco-Pasternak foundations. Some numerical results are presented to indicate the effects of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic behavior of rectangular FG plates.

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet;Hadji, Lazreg;Akan, Recep
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2022
  • The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.