• Title/Summary/Keyword: linear drainage channel

Search Result 3, Processing Time 0.015 seconds

Varied Flow Analysis for Linear Drainage Channels (선형 배수로에 대한 부등류 해석)

  • Ku, Hye-Jin;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.773-784
    • /
    • 2008
  • The present study was carried out to examine flow properties in linear drainage channels such as road surface drainage facilities. The finite difference formulation for the varied flow analysis was solved for flow profiles in the channels. Starting the first step at the control section, the Newton-Raphson method was applied for producing numerical solutions of the equation. We considered two types of linear drainage channels, a channel with one outlet at downstream end and a channel with two outlets at both ends. Moreover, the flow analysis for various channel slopes was performed. However, we considered channels with the two outlets of slopes satisfying the condition that the both ends are the control section. The maximum of those slopes was decided from the relation between the channel slope and the location of control section. The flow of a channel with one outlet was calculated upward and downward from the control section existing in channel or upward from the control section at downstream end. The flow of a channel with two outlets at both ends were calculated for upstream and downstream channel segments divided by the water dividend, respectively and the flow analysis was completed when the water depth at the water dividend calculated from upstream end was equal to that calculated from downstream end. If the slope was larger than the critical slope, the channel with two outlets was likely to behave like the channel with one outlet. The maximum water depth was investigated and compared with that calculated additionally from the uniform flow analysis. The uniform flow analysis was likely to lead a excessive design of a drainage channel with mild slope.

Design of Road Surface Drainage Facilities Based on Varied Flow Analysis (부등류 해석을 기반으로 한 노면배수시설 설계)

  • Ku, Hye-Jin;Kim, Jin-Soo;Park, Hyung-Seop;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1173-1185
    • /
    • 2008
  • The design methods of the road surface drainage facilities were compared for the improvement of design method. We have developed four computational design models classified by the methods to determine the duration of design rainfall and to analyze the flow of a linear drainage channel. The critical duration was determined by assuming the critical duration to be 10 minutes or by finding the duration of design storm being similar to the travel time of flow by trial and error. The flow of a linear drainage channel was analyzed as the uniform flow or the varied flow. The design models were applied to the artificial road surface drainage facilities with various channel slopes and road shoulder slopes. If the rainfall intensity of the 10 minutes duration was applied, the outlet spacing obtained from the design based on the varied flow analysis was larger than the uniform flow analysis only when the channel slope and the road shoulder slope was small. On the other hands, if the duration of design rainfall was determined by calculating the travel time, the varied flow analysis brought about larger outlet spacing than the uniform analysis for all conditions. However, the model of the critical duration concept and the varied flow analysis resulted in smaller outlet spacing than the current design method employing the rainfall of 10 minutes duration and the uniform flow analysis.

Re-Analysis of Clark Model Based on Drainage Structure of Basin (배수구조를 기반으로 한 Clark 모형의 재해석)

  • Park, Sang Hyun;Kim, Joo Cheol;Jeong, Dong Kug;Jung, Kwan Sue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2255-2265
    • /
    • 2013
  • This study presents the width function-based Clark model. To this end, rescaled width function with distinction between hillslope and channel velocity is used as time-area curve and then it is routed through linear storage within the framework of not finite difference scheme used in original Clark model but analytical expression of linear storage routing. There are three parameters focused in this study: storage coefficient, hillslope velocity and channel velocity. SCE-UA, one of the popular global optimization methods, is applied to estimate them. The shapes of resulting IUHs from this study are evaluated in terms of the three statistical moments of hydrologic response functions: mean, variance and the third moment about the center of IUH. The correlation coefficients to the three statistical moments simulated in this study against these of observed hydrographs were estimated at 0.995 for the mean, 0.993 for the variance and 0.983 for the third moment about the center of IUH. The shape of resulting IUHs from this study give rise to satisfactory simulation results in terms of the mean and variance. But the third moment about the center of IUH tend to be overestimated. Clark model proposed in this study is superior to the one only taking into account mean and variance of IUH with respect to skewness, peak discharge and peak time of runoff hydrograph. From this result it is confirmed that the method suggested in this study is useful tool to reflect the heterogeneity of drainage path and hydrodynamic parameters. The variation of statistical moments of IUH are mainly influenced by storage coefficient and in turn the effect of channel velocity is greater than the one of hillslope velocity. Therefore storage coefficient and channel velocity are the crucial factors in shaping the form of IUH and should be considered carefully to apply Clark model proposed in this study.