• Title/Summary/Keyword: linear discriminant analysis

Search Result 338, Processing Time 0.02 seconds

Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers (선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식)

  • Oh Byung-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.41-48
    • /
    • 2005
  • This paper presents a face recognition method based on the combination of well-known statistical representations of Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA) with Radial Basis Function Networks. The original face image is first processed by PCA to reduce the dimension, and thereby avoid the singularity of the within-class scatter matrix in LDA calculation. The result of PCA process is applied to LDA classifier. In the second approach, the LDA process Produce a discriminational features of the face image, which is taken as the input of the Radial Basis Function Network(RBFN). The proposed approaches has been tested on the ORL face database. The experimental results have been demonstrated, and the recognition rate of more than 93.5% has been achieved.

  • PDF

Infrared Gait Recognition using Wavelet Transform and Linear Discriminant Analysis (웨이블릿 변환과 선형 판별 분석법을 이용한 적외선 걸음걸이 인식)

  • Kim, SaMun;Lee, DaeJong;Chun, MyungGeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.622-627
    • /
    • 2014
  • This paper proposes a new method which improves recognition rate on the gait recognition system using wavelet transform, linear discriminant analysis and genetic algorithm. We use wavelet transform to obtain the four sub-bands from the gait energy image. In order to extract feature data from sub-bands, we use linear discriminant analysis. Distance values between training data and four sub-band data are calculated and four weights which are calculated by genetic algorithm is assigned at each sub-band distance. Based on a new fusion distance value, we conducted recognition experiments using k-nearest neighbors algorithm. Experimental results show that the proposed weight fusion method has higher recognition rate than conventional method.

Representation and Detection of Video Shot s Features for Emotional Events (감정에 관련된 비디오 셧의 특징 표현 및 검출)

  • Kang, Hang-Bong;Park, Hyun-Jae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.53-62
    • /
    • 2004
  • The processing of emotional information is very important in Human-Computer Interaction (HCI). In particular, it is very important in video information processing to deal with a user's affection. To handle emotional information, it is necessary to represent meaningful features and detect them efficiently. Even though it is not an easy task to detect emotional events from low level features such as colour and motion, it is possible to detect them if we use statistical analysis like Linear Discriminant Analysis (LDA). In this paper, we propose a representation scheme for emotion-related features and a defection method. We experiment with extracted features from video to detect emotional events and obtain desirable results.

Graphical Methods for the Sensitivity Analysis in Discriminant Analysis

  • Jang, Dae-Heung;Anderson-Cook, Christine M.;Kim, Youngil
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.475-485
    • /
    • 2015
  • Similar to regression, many measures to detect influential data points in discriminant analysis have been developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a data point is omitted. The new method is intuitive and easily interpretable compared to existing methods. We also propose a graphical display to show the individual movement of the posterior probability of other data points when a specific data point is omitted. This enables the summaries to capture the overall pattern of the change.

Incremental Linear Discriminant Analysis for Streaming Data Using the Minimum Squared Error Solution (스트리밍 데이터에 대한 최소제곱오차해를 통한 점층적 선형 판별 분석 기법)

  • Lee, Gyeong-Hoon;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.69-75
    • /
    • 2018
  • In the streaming data where data samples arrive sequentially in time, it is difficult to apply the dimension reduction method based on batch learning. Therefore an incremental dimension reduction method for the application to streaming data has been studied. In this paper, we propose an incremental linear discriminant analysis method using the least squared error solution. Instead of computing scatter matrices directly, the proposed method incrementally updates the projective direction for dimension reduction by using the information of a new incoming sample. The experimental results demonstrate that the proposed method is more efficient compared with previously proposed incremental dimension reduction methods.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

Comparison of Alternative knowledge Acquisition Methods for Allergic Rhinitis

  • Chae, Young-Moon;Chung, Seung-Kyu;Suh, Jae-Gwon;Ho, Seung-Hee;Park, In-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.91-109
    • /
    • 1995
  • This paper compared four knowledge acquisition methods (namely, neural network, case-based reasoning, discriminant analysis, and covariance structure modeling) for allergic rhinitis. The data were collected from 444 patients with suspected allergic rhinitis who visited the Otorlaryngology Deduring 1991-1993. Among four knowledge acquisition methods, the discriminant model had the best overall diagnostic capability (78%) and the neural network had slightly lower rate(76%). This may be explained by the fact that neural network is essentially non-linear discriminant model. The discriminant model was also most accurate in predicting allergic rhinitis (88%). On the other hand, the CSM had the lowest overall accuracy rate (44%) perhaps due to smaller input data set. However, it was most accuate in predicting non-allergic rhinitis (82%).

  • PDF

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Relevance-Weighted $(2D)^2$LDA Image Projection Technique for Face Recognition

  • Sanayha, Waiyawut;Rangsanseri, Yuttapong
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.438-447
    • /
    • 2009
  • In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.

Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis (포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.64-69
    • /
    • 2008
  • This paper discusses low resolution face recognition using the photon-counting linear discriminant analysis (LDA). The photon-counting LDA asymptotically realizes the Fisher criterion without dimensionality reduction since it does not suffer from the singularity problem of the fisher LDA. The linear discriminant function for optimal projection is determined in high dimensional space to classify unknown objects, thus, it is more efficient in dealing with low resolution facial images as well as conventional face distortions. The simulation results show that the proposed method is superior to Eigen face and Fisher face in terms of the accuracy and false alarm rates.