• 제목/요약/키워드: linear discriminant analysis(LDA)

검색결과 170건 처리시간 0.027초

교통 표지판 자동 인식에 관한 연구 (Study of Traffic Sign Auto-Recognition)

  • 권만준
    • 한국산학기술학회논문지
    • /
    • 제15권9호
    • /
    • pp.5446-5451
    • /
    • 2014
  • 내비게이션 단말기에 사용되는 전자지도 제작이 수작업으로 이루어지고 있어 오기가 발생할 수 있기 때문에, 본 논문에서는 내비게이션 정보의 요소로 다루어지는 교통 표지판에 대한 오프라인 자동 인식에 대해 제안하였다. 컴퓨터 비전과 패턴 인식 응용 분야로 2차원 얼굴 인식 분야에 널리 활용되고 있는 주성분분석기법(PCA)과 선형판별분석기법(LDA)을 이용하여 교통표지판을 인식하고자 한다. 먼저 PCA를 이용하여 높은 차원의 2차원 이미지 데이터를 저차원의 특징 벡터영역으로 투영을 시킨다. PCA로부터 구해진 저차원의 특징 벡터를 이용하여 LDA로 분산 매트릭스들 간에 최대가 되고 하고, 분산 매트릭스 내에서는 최소가 되도록 하였다. 실제 도로 환경에서 추출된 교통 신호판의 대부분을 제안된 알고리즘에 의해서 특징 벡터를 40개 이상 사용하였을 경우 92.3%이상의 높은 인식률을 보임을 확인하였다.

Subtype-Based Microbial Analysis in Non-small Cell Lung Cancer

  • Hye Jin Jang;Eunkyung Lee;Young-Jae Cho;Sang Hoon Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권4호
    • /
    • pp.294-303
    • /
    • 2023
  • Background: The human lung serves as a niche for a unique and dynamic bacterial community related to the development and aggravation of multiple respiratory diseases. Therefore, identifying the microbiome status is crucial to maintaining the microecological balance and maximizing the therapeutic effect on lung diseases. Therefore, we investigated the histological type-based differences in the lung microbiomes of patients with lung cancer. Methods: We performed 16S rRNA sequencing to evaluate the respiratory tract microbiome present in bronchoalveolar lavage fluid. Patients with non-small cell lung cancer were stratified based on two main subtypes of lung cancer: adenocarcinoma and squamous cell carcinoma (SqCC). Results: Among the 84 patients analyzed, 64 (76.2%) had adenocarcinoma, and 20 (23.8%) had SqCC. The α- and β-diversities showed significant differences between the two groups (p=0.004 for Chao1, p=0.001 for Simpson index, and p=0.011 for PERMANOVA). Actinomyces graevenitzii was dominant in the SqCC group (linear discriminant analysis [LDA] score, 2.46); the populations of Haemophilus parainfluenza (LDA score, 4.08), Neisseria subflava (LDA score, 4.07), Porphyromonas endodontalis (LDA score, 3.88), and Fusobacterium nucleatum (LDA score, 3.72) were significantly higher in the adenocarcinoma group. Conclusion: Microbiome diversity is crucial for maintaining homeostasis in the lung environment, and dysbiosis may be related to the development and prognosis of lung cancer. The mortality rate was high, and the microbiome was not diverse in SqCC. Further large-scale studies are required to investigate the role of the microbiome in the development of different lung cancer types.

부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식 (Real-Time Face Recognition Based on Subspace and LVQ Classifier)

  • 권오륜;민경필;전준철
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.19-32
    • /
    • 2007
  • 본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.

  • PDF

잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식 (Speech Recognition Using Noise Robust Features and Spectral Subtraction)

  • 신원호;양태영;김원구;윤대희;서영주
    • 한국음향학회지
    • /
    • 제15권5호
    • /
    • pp.38-43
    • /
    • 1996
  • 본 논문에서는 잡음 및 주변 환경에 강인한 것으로 알려져 있는 특징 벡터들을 이용한 인식 성능을 비교하였다. 아울러 스펙트럼 차감법을 적용하여 높은 인식 성능을 얻도록 하였다. 본 논문에서는 환경 변화에 강인한 인식 성능을 얻기 위하여 SMC(Short time Modified Coherence) 분석, 루트(root) 켑스트럼 분석, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) 처리 등을 이용하여 인식 실험을 수행하였다. 실험을 위하여 반연속 HMM을 이용한 단독음 인식 시스템을 구현하였고 전시장 및 컴퓨터실의 잡음을 첨가하여 0, 10 및 20dB의 SNR에 대한 인식 실험을 수행하였다. 실험 결과, LPCC(Linear Prediction Cepstral Coefficient)를 이용한 경우에 비하여 SMC나 루트처리를 이용한 멜 켑스트럼(루트_멜 켑스트럼)을 이용한 경우 10dB의 SNR에서 각각 9.86%, 12.68% 향상된 가장 좋은 인식률을 얻었다. 또한 멜 켑스트럼과 루트_멜 켑스트럼을 스펙트럼 차감법과 결합하여 잡음을 제거한 경우 10dB에서 각각 16.7%, 8.4% 향상된 94.91%, 94.28%의 인식률을 얻을 수 있었다.

  • PDF

A Comparative Study on Classification Methods of Sleep Stages by Using EEG

  • Kim, Jinwoo
    • 한국멀티미디어학회논문지
    • /
    • 제17권2호
    • /
    • pp.113-123
    • /
    • 2014
  • Electrophysiological recordings are considered a reliable method of assessing a person's alertness. Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in recognition of alertness level. In this paper, EEG signals have been analyzed using wavelet transform as well as discrete wavelet transform and classification using statistical classifiers such as euclidean and mahalanobis distance classifiers and a promising method SVM (Support Vector Machine). As a result of simulation, the average values of accuracies for the Linear Discriminant Analysis (LDA)-Quadratic, k-Nearest Neighbors (k-NN)-Euclidean, and Linear SVM were 48%, 34.2%, and 86%, respectively. The experimental results show that SVM classification method offer the better performance for reliable classification of the EEG signal in comparison with the other classification methods.

표정 분류 연구 (Analysis of facial expression recognition)

  • 손나영;조현선;이소현;송종우
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.539-554
    • /
    • 2018
  • 최근 등장하는 다양한 사물인터넷 기기 혹은 상황인식 기반의 인공지능에서는 사용자와 기기의 상호작용이 중요시 된다. 특히 인간을 대상으로 상황에 맞는 대응을 하기 위해서는 인간의 표정을 실시간으로 인식하여 빠르고 정확한 판단을 내리는 것이 필요하다. 따라서, 보다 빠르고 정확하게 표정을 인식하는 시스템을 구축하기 위해 얼굴 이미지 분석에 대한 많은 연구들이 선행되어 왔다. 본 연구에서는 웹사이트 Kaggle에서 제공한 48*48 8-bit grayscale 이미지 데이터셋을 사용하여 얼굴인식과 표정분류로 구분된 두 단계를 거치는 얼굴표정 자동 인식 시스템을 구축하였고, 이를 기존의 연구와 비교하여 자료 및 방법론의 특징을 고찰하였다. 분석 결과, Face landmark 정보에 주성분분석을 적용하여 단 30개의 주성분만으로도 빠르고 효율적인 예측모형을 얻을 수 있음이 밝혀졌다. LDA, Random forest, SVM, Bagging 중 SVM방법을 적용했을 때 가장 높은 정확도를 보이며, LDA방법을 적용하는 경우는 SVM 다음으로 높은 정확도를 보이며, 매우 빠르게 적합하고 예측하는 것이 가능하다.

슬통 진단용 설문지개발 및 진단 일치도 평가연구 (Development of Knee Pain Diagnosis Questionnaire and Clinical Study of Diagnostic Correspondent Rate)

  • 황지후;김유종;김은정;이참결;이은용;이승덕;김갑성
    • Journal of Acupuncture Research
    • /
    • 제29권5호
    • /
    • pp.61-74
    • /
    • 2012
  • Objectives : This study is perfomed for preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the knee pain. Methods : Statistical analysis about Crane's-knee wind(鶴膝風), arthralgia syndrome(痺症), knee injury(膝傷), gout arthritis(痛風), Youk jeol poung(歷節風) classified experts' opinions about knee pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis(LDA), diagonal linear discriminant analysis(DLDA), diagonal quadratic discriminant analysis(DQDA), K-nearest neighbor classification(KNN), classification and regression trees(CART), support vector machines(SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 81.65% in comparison with the original diagnosis. 2. The result analyzed by using DLDA has a hit rate of 63.3% in comparison with the original diagnosis. 3. The result analyzed by using DQDA has a hit rate of 65.14% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 74.31% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 75.23% in comparison with the original diagnosis when the test of selected 13 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 87.16% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on knee pain generally turned out to have a significant result.

클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출 (Nonlinear Feature Extraction using Class-augmented Kernel PCA)

  • 박명수;오상록
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.7-12
    • /
    • 2011
  • 본 논문에서는 자료패턴을 분류하기에 적합한 특징을 추출하는 방법인, 클래스가 부가된 커널 주성분분석(class-augmented kernel principal component analysis)를 새로이 제안하였다. 특징추출에 널리 이용되는 부분공간 기법 중, 최근 제안된 클래스가 부가된 주성분분석(class-augmented principal component analysis)은 패턴 분류를 위한 특징을 추출하기 위해 이용되는 선형분류분석(linear discriminant analysis)등에 비해 정확한 특징을 계산상의 문제 없이 추출할 수 있는 기법이다. 그러나, 추출되는 특징은 입력의 선형조합으로 제한되어 자료에 따라 적절한 특징을 추출하기 어려운 경우가 발생한다. 이를 해결하기 위하여 클래스가 부가된 주성분분석에 커널 트릭을 적용하여 비선형 특징을 추출할 수 있는 새로운 부분공간 기법으로 확장하고, 실험을 통하여 성능을 평가하였다.

Finding the Optimal Data Classification Method Using LDA and QDA Discriminant Analysis

  • Kim, SeungJae;Kim, SungHwan
    • 통합자연과학논문집
    • /
    • 제13권4호
    • /
    • pp.132-140
    • /
    • 2020
  • With the recent introduction of artificial intelligence (AI) technology, the use of data is rapidly increasing, and newly generated data is also rapidly increasing. In order to obtain the results to be analyzed based on these data, the first thing to do is to classify the data well. However, when classifying data, if only one classification technique belonging to the machine learning technique is applied to classify and analyze it, an error of overfitting can be accompanied. In order to reduce or minimize the problems caused by misclassification of the classification system such as overfitting, it is necessary to derive an optimal classification by comparing the results of each classification by applying several classification techniques. If you try to interpret the data with only one classification technique, you will have poor reasoning and poor predictions of results. This study seeks to find a method for optimally classifying data by looking at data from various perspectives and applying various classification techniques such as LDA and QDA, such as linear or nonlinear classification, as a process before data analysis in data analysis. In order to obtain the reliability and sophistication of statistics as a result of big data analysis, it is necessary to analyze the meaning of each variable and the correlation between the variables. If the data is classified differently from the hypothesis test from the beginning, even if the analysis is performed well, unreliable results will be obtained. In other words, prior to big data analysis, it is necessary to ensure that data is well classified to suit the purpose of analysis. This is a process that must be performed before reaching the result by analyzing the data, and it may be a method of optimal data classification.

Enhanced Independent Component Analysis of Temporal Human Expressions Using Hidden Markov model

  • 이지준;;김태성
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.487-492
    • /
    • 2008
  • Facial expression recognition is an intensive research area for designing Human Computer Interfaces. In this work, we present a new facial expression recognition system utilizing Enhanced Independent Component Analysis (EICA) for feature extraction and discrete Hidden Markov Model (HMM) for recognition. Our proposed approach for the first time deals with sequential images of emotion-specific facial data analyzed with EICA and recognized with HMM. Performance of our proposed system has been compared to the conventional approaches where Principal and Independent Component Analysis are utilized for feature extraction. Our preliminary results show that our proposed algorithm produces improved recognition rates in comparison to previous works.

  • PDF