• 제목/요약/키워드: linear differential equations

검색결과 542건 처리시간 0.042초

A NON-ASYMPTOTIC METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS

  • File, Gemechis;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.39-53
    • /
    • 2014
  • In this paper, a non-asymptotic method is presented for solving singularly perturbed delay differential equations whose solution exhibits a boundary layer behavior. The second order singularly perturbed delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. Then, Simpson's integration formula and linear interpolation are employed to get three term recurrence relation which is solved easily by Discrete Invariant Imbedding Algorithm. Some numerical examples are given to validate the computational efficiency of the proposed numerical scheme for various values of the delay and perturbation parameters.

A LOCAL-GLOBAL STEPSIZE CONTROL FOR MULTISTEP METHODS APPLIED TO SEMI-EXPLICIT INDEX 1 DIFFERENTIAL-ALGEBRAIC EUATIONS

  • Kulikov, G.Yu;Shindin, S.K.
    • Journal of applied mathematics & informatics
    • /
    • 제6권3호
    • /
    • pp.697-726
    • /
    • 1999
  • In this paper we develop a now procedure to control stepsize for linear multistep methods applied to semi-explicit index 1 differential-algebraic equations. in contrast to the standard approach the error control mechanism presented here is based on monitoring and contolling both the local and global errors of multistep formulas. As a result such methods with the local-global stepsize control solve differential-algebraic equation with any prescribed accuracy (up to round-off errors). For implicit multistep methods we give the minimum number of both full and modified Newton iterations allowing the iterative approxima-tions to be correctly used in the procedure of the local-global stepsize control. We also discuss validity of simple iterations for high accuracy solving differential-algebraic equations. Numerical tests support the the-oretical results of the paper.

A NEW APPROACH FOR ASYMPTOTIC STABILITY A SYSTEM OF THE NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

  • Effati, Sohrab;Nazemi, Ali Reza
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.231-244
    • /
    • 2007
  • In this paper, we use measure theory for considering asymptotically stable of an autonomous system [1] of first order nonlinear ordinary differential equations(ODE's). First, we define a nonlinear infinite-horizon optimal control problem related to the ODE. Then, by a suitable change of variable, we transform the problem to a finite-horizon nonlinear optimal control problem. Then, the problem is modified into one consisting of the minimization of a linear functional over a set of positive Radon measures. The optimal measure is approximated by a finite combination of atomic measures and the problem converted to a finite-dimensional linear programming problem. The solution to this linear programming problem is used to find a piecewise-constant control, and by using the approximated control signals, we obtain the approximate trajectories and the error functional related to it. Finally the approximated trajectories and error functional is used to for considering asymptotically stable of the original problem.

FSAL MONO-IMPLICIT NORDSIECK GENERAL LINEAR METHODS WITH INHERENT RUNGE-KUTTA STABILITY FOR DAES

  • OLATUNJI, P.O.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.262-295
    • /
    • 2021
  • This paper introduces mono-implicit general linear methods, a special class of general linear methods, which are implicit in the output solution for the numerical integration of differential algebraic equations. We show how L-stable inherent Runge-Kutta members can be derived. The procedures for implementation have been discussed. The numerical test on the problem considered shows that the methods have improved accuracy when compared to RADAU IIA and the results from MATLAB ode15s, which have been taken as our reference solution.

FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS

  • Wen, Zhi-Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • 제51권1호
    • /
    • pp.83-98
    • /
    • 2014
  • During the last decade, several papers have focused on linear q-difference equations of the form ${\sum}^n_{j=0}a_j(z)f(q^jz)=a_{n+1}(z)$ with entire or meromorphic coefficients. A tool for studying these equations is a q-difference analogue of the lemma on the logarithmic derivative, valid for meromorphic functions of finite logarithmic order ${\rho}_{log}$. It is shown, under certain assumptions, that ${\rho}_{log}(f)$ = max${{\rho}_{log}(a_j)}$ + 1. Moreover, it is illustrated that a q-Casorati determinant plays a similar role in the theory of linear q-difference equations as a Wronskian determinant in the theory of linear differential equations. As a consequence of the main results, it follows that the q-gamma function and the q-exponential functions all have logarithmic order two.

THE ZEROS DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS IN AN ANGULAR DOMAIN

  • Huang, Zhibo;Chen, Zongxuan
    • Bulletin of the Korean Mathematical Society
    • /
    • 제47권3호
    • /
    • pp.443-454
    • /
    • 2010
  • In this paper, we investigate the zeros distribution and Borel direction for the solutions of linear homogeneous differential equation $f^{(n)}+A_{n-2}(z)f^{(n-2)}+{\cdots}+A_1(z)f'+A_0(z)f=0(n{\geq}2)$ in an angular domain. Especially, we establish a relation between a cluster ray of zeros and Borel direction.

OSCILLATION AND ASYMPTOTIC BEHAVIOR FOR DELAY DIFFERENTIAL EQUATIONS

  • Choi, Sung-Kyu;Koo, Nam-Jip;Ryu, Hyun-Sook
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.641-652
    • /
    • 2000
  • In this paper we will survey the recent results about oscillation and asymptotic behavior for the linear differential equation with a single delay x'9t)+p(t)x(t-r)=0, $t\geqt_1$.

INEXACT-NEWTON METHOD FOR SOLVING OPERATOR EQUATIONS IN INFINITE-DIMENSIONAL SPACES

  • Liu Jing;Gao Yan
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.351-360
    • /
    • 2006
  • In this paper, we develop an inexact-Newton method for solving nonsmooth operator equations in infinite-dimensional spaces. The linear convergence and superlinear convergence of inexact-Newton method under some conditions are shown. Then, we characterize the order of convergence in terms of the rate of convergence of the relative residuals. The present inexact-Newton method could be viewed as the extensions of previous ones with same convergent results in finite-dimensional spaces.

Free Vibration Analysis of a Rotating Cantilever Beam by Using Differential Transformation Method (미분변환법을 이용한 회전외팔보의 자유진동해석)

  • Sin, Young-Jae;Jy, Young-Chel;Yun, Jong-Hak;Yoo, Yeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제31권3호
    • /
    • pp.331-337
    • /
    • 2007
  • Rotating cantilever beams can be found in several practical engineering applications such as turbine blades and helicopter rotor blades. For reliable and economic design, it is necessary to estimate the dynamic characteristics of those structures accurately and efficiently since significant variation of dynamic characteristics resulted from rotational motion of the structures. Recently, Differential Transformation Method(DTM) was proposed by Zhou. This method has been applied to fluid dynamics and vibration problems, and has shown accuracy, efficiency and convenience in solving differential equations. The purpose of this study, the free vibration analysis of a rotating cantilever beam, is to seek for the reliable property of DTM and confidence in the results obtained by this method by comparing the results with that of finite element method applied to linear partial differential equations. In particular, this study is worked by supposing optional T-function values because the equations governing chordwise motion are based on two differential equations coupled with each other. This study also shows mode shapes of rotating cantilever beams for various rotating speeds.

Fuzzy finite element method for solving uncertain heat conduction problems

  • Chakraverty, S.;Nayak, S.
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.345-360
    • /
    • 2012
  • In this article we have presented a unique representation for interval arithmetic. The traditional interval arithmetic is transformed into crisp by symbolic parameterization. Then the proposed interval arithmetic is extended for fuzzy numbers and this fuzzy arithmetic is used as a tool for uncertain finite element method. In general, the fuzzy finite element converts the governing differential equations into fuzzy algebraic equations. Fuzzy algebraic equations either give a fuzzy eigenvalue problem or a fuzzy system of linear equations. The proposed methods have been used to solve a test problem namely heat conduction problem along with fuzzy finite element method to see the efficacy and powerfulness of the methodology. As such a coupled set of fuzzy linear equations are obtained. These coupled fuzzy linear equations have been solved by two techniques such as by fuzzy iteration method and fuzzy eigenvalue method. Obtained results are compared and it has seen that the proposed methods are reliable and may be applicable to other heat conduction problems too.