• Title/Summary/Keyword: linear difference equation

Search Result 265, Processing Time 0.026 seconds

Development of a Nuclease Protection Assay With Sandwich Hybridization (NPA-SH) to Monitor Heterosigma akashiwo (Heterosigma akashiwo를 모니터하기 위한 뉴클레아제 보호 분석이 통합된 샌드위치 혼성(NPA-SH)의 개발)

  • Kang, Mingyeong;Park, Mirye;Kim, Kang Eun;Lee, Taek-Kyun
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.26-31
    • /
    • 2020
  • Heterosigma akashiwo is a globally distributed raphidophyte that forms blooms and causes significant losses to the aquaculture industry in many coastal countries. The development of a fast and sensitive detection method is therefore required to facilitate the appropriate warning of harmful algal blooms. In this study, a nuclease protection integrated with sandwich hybridization (NPA-SH) assay was developed to both qualitatively and quantitatively detect H. akashiwo. The NPA, capture and signal probes were designed by nucleotide sequencing of H. akashiwo. The applicability of NPA-SH was evaluated using cultured H. akashiwo cells and field samples collected at Goseong Bay, Korea. The results show that this method has good applicability and effectiveness in analyzing cultured cells and field samples. A linear regression equation for the quantitative analysis of H. akashiwo was obtained, and the lower detection limit of the assay was 1×104 cells/ml. There was no statistically significant difference in the results of H. akashiwo quantitation using NPA-SH compared to those obtained using a microscope. These results indicate that NPA-SH can be a good alternative to the traditional microscopic method used to monitor H. akashiwo.

Relationship between Exposure Index and Overheating Index in Complex Terrain (복잡지형에서 사면 개방도과 계절별 과열지수 사이의 관계)

  • 정유란;황범석;서형호;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.200-207
    • /
    • 2003
  • '||'||'||'&'||'||'||'quot;Overheating index'||'||'||'&'||'||'||'quot;, the normalized difference in incident solar energy between a target surface and a level surface, is helpful in estimating the spatial variation in daily maximum temperature at the landscape scale. It can be computed as the ratio of the 4-hour cumulative solar irradiance surplus or deficit from that over a level surface to the maximum possible deviation (15 MJ $m^{-2}$ ) during the midafternoon. Ecosystem models may, for simplicity, use an empirical proxy (exposure index) variable combining slope and aspect in place of the overheating index to account for the variation of midafternoon solar irradiance. A comparative study with real-world landscape data was carried out to evaluate the performance of exposure index in replacing the overheating index. Overheating indices for summer solstice, fall equinox and winter solstice were calculated at 573,650 grid cells constituting the land surface of Donggye-Myun, Sunchang County in Korea, based on a 10-m DEM. Exposure index was also calculated for the same area and fitted for the variation of overheating index to derive a 2$^{nd}$ -order linear regression equation. The coefficient of determination ($R^2$) was 0.50 on summer solstice, 0.56 on fall equinox, and 0.44 on winter solstice, respectively. These are much lower than the theoretically calculated $R^2$ values ranging from 0.7 in summer to 0.9 in autumn. According to our study, exposure index failed to accurately predict the cumulative solar irradiance over a complex terrain, hindering its application to daily maximum temperature estimation. We suggest direct calculation of the overheating index in preference to using the exposure index.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

Experimental Evaluation of Levitation and Imbalance Compensation for the Magnetic Bearing System Using Discrete Time Q-Parameterization Control (이산시간 Q 매개변수화 제어를 이용한 자기축수 시스템에 대한 부상과 불평형보정의 실험적 평가)

  • ;Fumio Matsumura
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.964-973
    • /
    • 1998
  • In this paper we propose a levitation and imbalance compensation controller design methodology of magnetic bearing system. In order to achieve levitation and elimination of unbalance vibartion in some operation speed we use the discrete-time Q-parameterization control. When rotor speed p = 0 there are no rotor unbalance, with frequency equals to the rotational speed. So in order to make levitatiom we choose the Q-parameterization controller free parameter Q such that the controller has poles on the unit circle at z = 1. However, when rotor speed p $\neq$ 0 there exist sinusoidal disturbance forces, with frequency equals to the rotational speed. So in order to achieve asymptotic rejection of these disturbance forces, the Q-parameterization controller free parameter Q is chosen such that the controller has poles on the unit circle at z = $exp^{ipTs}$ for a certain speed of rotation p ( $T_s$ is the sampling period). First, we introduce the experimental setup employed in this research. Second, we give a mathematical model for the magnetic bearing in difference equation form. Third, we explain the proposed discrete-time Q-parameterization controller design methodology. The controller free parameter Q is assumed to be a proper stable transfer function. Fourth, we show that the controller free parameter which satisfies the design objectives can be obtained by simply solving a set of linear equations rather than solving a complicated optimization problem. Finally, several simulation and experimental results are obtained to evaluate the proposed controller. The results obtained show the effectiveness of the proposed controller in eliminating the unbalance vibrations at the design speed of rotation.

  • PDF

Estimating Saturation-paste Electrical Conductivities of Rose-cultivated Soils from their Diluted Soil Extracts (절화장미 재배토양에서 희석된 토양 침출용액으로부터 포화반죽 전기전도도 추정)

  • Lee, In-Bog;Ro, Hee-Myong;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.398-404
    • /
    • 2000
  • We examined the effect of soil:water ratio on the equivalent concentration of individual electrolyte species and the electrical conductivities (EC) of the diluted extracts of 24 soil samples (loam or silt loam) collected from rose-cultivated plastic houses to estimate the EC of saturated soil-paste extracts (ECe) from diluted soil extracts. With increasing volume ratio of water (higher dilution), the equivalent concentrations of each electrolyte species and their sum increased. The relative contribution to the EC, however, was highest for $NO_3{^-}$, irrespective of soil:water ratio. The measured ECe was 6.36 for loam and $8.09dS\;m^{-1}$ for silt loam soils and the corresponding soil:water ratio was 0.38 and 0.50, respectively. The EC_e estimated from the EC of diluted extracts at 1:1, 1:2, or 1:5 soil:water ratios using their corresponding uniform diluted factors was lower than the measured EC_e and this difference was greater with higher dilution and EC values. Therefore, the alternative diluted factors (y) for each soil: water ratio were obtained following the definition of diluted factor and were correlated significantly with volume ratios of added water (x): y=1.55x+0.5 for loam and y=1.21x+0.48 for silt loam soils. On the other hand, correlation analyses of the EC of soil extracts (y) to the volume ratio of added water (x) on log-log scale yielded linear models: logy = -0.805logx + logb, SD of slope=0.05, b=sample specific constant, n=24). With known saturation percentage of a sample representing a group and and the EC of diluted extract of a given soil, the EC_e could be predicted using the proposed logarithmic equation.

  • PDF

A Study on the Design of Ship′s Bow Form using Surface Panel Method (판요소법을 이용한 선수형상 설계에 관한 연구[1])

  • Jae-Hoon Yoo;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.35-47
    • /
    • 1996
  • A surface panel method treating a boundary-value problem of the Dirichlet type is presented to design a three dimensional body with free surface corresponding to a prescribed pressure distribution. An integral equation is derived from Green's theorem, giving a relation between total potential of known strength and the unknown local flux. Upon discretization, a system of linear simultaneous equations is formed including free surface boundary condition and is solved for an assumed geometry. The pseudo local flux, present due to the incorrect positioning of the assumed geometry, plays a role f the geometry corrector, with which the new geometry is computed for the next iteration. Sample designs for submerged spheroids and Wigley hull and carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. For the calculation of the wave resistance, normal dipoles and Rankine sources are distributed on the body surface and Rankine sources on the free surface. The free surface boundary condition is linearized with respect to the oncoming flow. Four-points upwind finite difference scheme is used to compute the free surface boundary condition. A hyperboloidal panel is adopted to represent the hull surface, which can compensate the defects of the low-order panel method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but by experiment.

  • PDF

Modeling of Medium Temperature Drops of the Elevated-bench Hydroponics for Strawberry Cultivation during Low Temperature Season (저온기 딸기 고설 수경재배시 온실기온에 따른 배지내 온도강하 모델 개발)

  • Park, Jae-Wan;Ha, Yu-Shin;Kim, Ki-Dong;Park, Dae-Heum;Lee, Ki-Myung;Jun, Ha-Joon;Kwon, Soon-Gu;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • A study on modeling of medium temperature drops of the elevated-bench hydroponic system for strawberry cultivation during low temperature season was conducted. Four different conditions were used for the experiment. These consisted of two kinds of bed types (plant, V), four kinds of medium (rice, perlite, rice hulls80% and peatmoss20%, perlite80% and peatmoss20%), two kinds of mulched bed (mulched, non mulched) and four kinds of greenhouse air temperature (l.5, 3.2, 5.0, $6.7^{\circ}C$), and the results were summarized as follows: Temperature drop of medium in the V-bed was slower than that in the plant bed, showing better insulation effect of V-bed. Temperature drop of medium with mulching on the top of the bed was slower than the case without mulching, as a result, the beneficial effect of temperature drop was appeared in mulched bed. Linear regression of the temperature descent rate and the temperature difference between medium and air showed significant correlation. The regression equation for the Pearlite80% and Peatmoss20% in the V-bed was f(x) = -0.2656 + 0.1345x at the $R^2$ of 0.9269. Using the model, the temperature drop during night can be predicted for the various media at the different depths.

Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor (충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구)

  • Shin, Sun Kyoung;Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies.

  • PDF

Urinary S-Phenylmercapturic Acid as a Biomarker for Biological Monitoring in Workers Exposed to Benzene (벤젠 노출 근로자의 생물학적 모니터링 지표로서의 요중 S-Phenylmercapturic Acid에 관한 연구)

  • Bang, Sin Ho;Kim, Kwang Jong;Yum, Yong Tae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.272-280
    • /
    • 1996
  • This study was to evaluate the associations between urinary S-Phenyl-mercapturic acid(S-PMA) as a new indicator of biological monitoring for low level of exposure to benzene and independent variables such as the air concentration of benzene in the breathing zone of workers, the years of work, and smoking. In this study the subjects were the total of 145 drawn from 53 workers who were occupationally exposed to benzene and 92 workers who were not. The results were as follows: 1. In the workplace geometric mean concentration of benzene in the breathing zone of workers was 0.31 ppm(0.02 - 3.26 ppm) for the spraying workers and 0.25 ppm(0.02 - 3.95 ppm) for the printing workers. 2. The geometric mean of uninary S-PMA for non exposed group was $8.9{\mu}g/g$ creatinine($0.6-72.3{\mu}g/g$ creatinine), 80.3% (74 workers) of the total non-exposed workers indicated less than $20{\mu}g/g$ creatinine of uninary S-PMA. The difference of uninary S-PMA by sex, age, smoking was not significant. 3. The geometric mean of urinary S-PMA for workers who were exposed to benzene was $37.2{\mu}g/g$ creatinine, and was four times higher than that of workers who were not exposed. And 79.3% (42 workers) of the total exposed workers indicated more than $20{\mu}g/g$ creatinine of urinary S-PMA. 4. Regarding the level of benzene in the air, urinary S-PMA was the highest level of $147.9{\mu}g/g$ creatinine in the workers who were exposed to air concentration of 0.5 ppm of benzene and was higher as the level in the air was increased. 5. The correlation coefficient between log urinary S-PMA and log benzene concentration in the breathing zone was 0.80, and the following linear equation was found between urinary log S-PMA and log benzene concentration in the breathing zone : log S-PMA(${\mu}g/g$ creatinine) = 0.564 log benzene in air(ppm) + 0.192 (n=53, r=0.80, p=0.000) In conclusion, the concentration of S-PMA in urine proved to be good parameter for biological monitoring benzene exposure at the workplace even at low level of benzene in air.

  • PDF

Effect of Crude Carbohydrate Content in Livestock Manure Compost on Organic Matter Decomposition Rate in Upland Soil (가축분 퇴비 조섬유 조성이 밭 토양에서 유기물 분해율에 미치는 영향)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Lee, Sang-Min;Hyun, Byung-Keun;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.364-368
    • /
    • 2007
  • The objective of this study was to characterize organic mater decomposition with application of livestock manure compost in upland soil. Six different composts, which were chicken (CHM), pig (PIM), and cow (COM) manure compost added and chicken (CHMS), pig (PIMS), cow (COMS) manure compost with sawdust added, were prepared for this study. These composts have different composition of crude carbohydrate (hemicellulose, cellulose, and lignin). The buried-bag method was used to determine the rate of organic mater decomposition and the changes of crude carbohydrate content during 36 months in the field. In all treatment, hemicellulose content was sharply decreased within 8 months, but considerable amount of lignin was remained after 36 months. After 40 months, the rates of carbon decreasing were 81, 80, 72, 69, 67, and 64 % for CHM, PIM, COM, CHMS, PIMS, and COMS, respectively. The estimated equation of carbon decreasing rate (D), $D=aT^b$, was fit to the carbon decreasing rate vs. elapsed time (T) using a non-linear regression procedure. After 40 months, significant difference of carbon decreasing rate between observed and estimated was not found. The relationship between constant a, b and hemicellulose content in the compost was not observed in this experiment. The cellulose and lignin content in the compost were positively correlated to the constant b and negatively correlated to the constant a.