• Title/Summary/Keyword: linear control

Search Result 6,282, Processing Time 0.036 seconds

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF

Bezier Control Points for the Image of a Domain Curve on a Bezier Surface (베지어 곡면의 도메인 곡선의 이미지 곡선에 대한 베지어 조정점의 계산)

  • 신하용
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.158-162
    • /
    • 1996
  • Algorithms to find the Bezier control points of the image of a Bezier domain curve on a Bezier surface are described. The diagonal image curve is analysed and the general linear case is transformed to the diagonal case. This proposed algorithm gives the closed form solution to find the control points of the image curve of a linear domain curve. If the domain curve is not linear, the image curve can be obtained by solving the system of linear equations.

  • PDF

Parameter Identification and Control for Linear Compressors (리니어 컴프레서를 위한 파라미터 추정 및 제어)

  • Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.243-245
    • /
    • 2006
  • A closed-loop sensorless stroke control system for a linear compressor has been designed. The motor parameters are identified as a function of the piston position and the motor current. They are stored in ROM table and used later for the accurate estimation of piston position. Also it was attempted to approximate the identified motor parameters to the 2nd-order surface functions. Some experimental results are given in order to show the feasibility of the proposed control schemes for linear compressors.

  • PDF

Linear Motor Damper for Vibration Control of Flexible Structure (유연 구조물의 진동제어를 위한 선형모터댐퍼)

  • Sim Sangdeok;Kang Hoshik;Song Ohseop;Kim Youngchan;Kim Doohoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.492-498
    • /
    • 2005
  • A linear motor damper based on the linear motor principle is developed to suppress structural vibration. This paper deals with the design, analysis, and manufacture of the linear motor damper. It is designed to be able to move the auxiliary mass of 1500kg, up to $\pm250mm$ stroke. The control algorithm was designed based on LQG control logic with acceleration feedback. Through performance tests, it was confirmed that the developed hybrid mass damper has reliable feasibility as a control device for structural control. In addition, the linear motor damper is more economical than both hydraulic and electric motor driving mass damper with respect to simple structure and low maintenance cost. A series of performance tests of the linear motor damper system were carried out on the full-scale steel frame structure in UNISON Corporation. Through the performance tests, it was confirmed that acceleration levels are reduced down 10dB for first mode of structure

Development of Linear Magnetic Actuator for Active Vibration Control (능동진동제어를 위한 선형 자기 액추에이터 개발)

  • Lee, Haeng-Woo;Kwak, Moon-K.;Kim, Ki-Young;Lee, Han-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.667-672
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

Position Control of Linear Actuator with Time Delay Using the Smith Predictor

  • Kang, Seung-Won;Park, Gi-sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.1-68
    • /
    • 2001
  • This paper discusses tracking position control of linear actuator that has a time delay. The time delay happens when the process reads the sensor data and sends the control input to the plant located at a remote site in distributed control system. In this thesis, the time delay between the linear actuator and the discrete PID controller has constant value due to buffer device so the time delay can be modeled by Pade approximation but the large position error of the linear actuator is generated by the time delay. Therefore, the Smith predictor is used for tracking position control of the linear actuator with the time delay in order to minimize the effect of the time delay. The experimental and simulation results show that the ...

  • PDF

Fundamental Study of an Integrated Control Method for a Linear Motor Driven Container Crane System

  • An, Sang-Beak;Taniguchi, Yuki;Yamamoto, Shigehiro;Azukizawa, Teruo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1060-1067
    • /
    • 2009
  • The authors have proposed a linear motor driven container crane system, in which the linear motor to drive trolley chassis is also used to control swaying motion of a hanging container. To utilize the proposed system, it is needed to develop a power saving control system for the linear drive system. In this paper, an integrated control system to minimize required electric power to drive a trolley chassis with the suppressed swaying motion of a hanged container, is proposed. The validity of the proposed control system is investigated by the simulation using Simulink.

Static Output Feedback Sliding Mode Control Design for Linear Systems with Mismatched Uncertainties (비정합 불확실성을 갖는 선형 시스템을 위한 정적 출력 궤환 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.15-18
    • /
    • 2007
  • We consider the problem of designing a static output feedback sliding mode control law for linear dynamical systems with mismatched uncertainties in the state matrix. We assume that an output dependent sliding surface guaranteeing the quadratic stability of the sliding mode dynamics is given, the reachability condition is not required to be satisfied globally, and the output feedback sliding mode control law complises both linear and discontinuous parts. We reduce the problem of designing the linear part of the sliding mode control law to a simple LMI problem which offers design flexibility for combining various useful convex design specifications. Our approach does not require state transformation and it can be applied to mismatched uncertain systems.

Direct Thrust Control of Permanent Magnet Type Linear Synchronous Motor by using Digital Signal Processor (DSP를 이용한 영구 자석형 선형 동기전동기의 직접 추력 제어)

  • U, Gyeong-Il;Kim, Deok-Jin;Gwon, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.514-521
    • /
    • 2000
  • This paper presents a direct thrust control scheme for permanent magnet linear synchronous motor(PMLSM) by using digital signal processor(DSP). And a simulation method for the direct thrust control of a permanent magnet linear synchronous motor using the equivalent circuit is presented. The detent force that was obtained by cubic spline method is considered in the simulation. Thrust correction coefficient is utilized to estimate actual thrust on the direct thrust control, which considers the longitudinal end effect due to the finite core length of the permanent magnet linear synchronous motor. The motor self inductance, the initial flux linkage by the permanent magnet is calculated in advance by the finite element analysis, and then the direct control simulation is carried out. As the results, thrust, current and speed are shwon.

  • PDF

An Orbit Robust Control Based on Linear Matrix Inequalities

  • Prieto, D.;Bona, B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.454-459
    • /
    • 2004
  • This paper considers the problem of satellite's orbit control and a solution based in Linear Matrix Inequalities (LMI) is proposed for the case of Low Earth Orbiters (LEO). In particular, the modelling procedure and the algorithm for control law synthesis are tested using as study case the European Gravity Field and Ocean Circulation Explorer satellite (GOCE), to be launched by the European Space Agency (ESA) in the year 2006. The scientific objective of this space mission is the recovering of the Earth gravity field with high accuracy (less than 10${\mu}m$/${\mu}m$) and spatial resolution (better than 100km). In order to meet these scientific requirements, the orbit control must guarantee stringent specifications in terms of environmental disturbances attenuation (atmospheric drag forces) even in presence of high levels of model uncertainty.

  • PDF