• Title/Summary/Keyword: linear cohesion

Search Result 61, Processing Time 0.026 seconds

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

Effect of Hardening of Granulated Blast Furnace Slag on the Liquefaction Strength (고로 수쇄슬래그의 경화가 액상화 강도에 미치는 영향)

  • Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.99-106
    • /
    • 2006
  • In the present study, in order to clarify the effects of latent hydraulic property of granulated blast furnace slag (GBF slag) on the liquefaction, GBF slag was cured in the high temperature alkali water (adding the calcium hydroxide, pH=12, water temperature is about $30^{\circ}C$), and then the cyclic and the static tri-axial compression tests were carried out. Then the results were compared with those for Japanese standard sand of Toyoura sand and natural sand of Genkai sand. From the test results, it is clarified that the liquefaction strength of the GBF slag increases with the increase of the curing period by the hardening due to the latent hydraulic property. It is also shown that GBF slag with Dr=50% and 80% which was cured for 189 days in the fresh-water shows cohesion due to developing of latent hydraulic property. In addition, as for the liquefaction strength of GBFS during the hardening process, a linear relation between the cyclic stress ratio $R_{20}$ at the number of stress cycles Nc=20 and cohesion $C_{d}$ was observed. It is also clarified that the liquefaction strength for cured GBF slag in the high temperature alkali water is predicted by the cohesive strength or the unconfined compressive strength.

Wedge Failure Probability Analysis for Rock Slope Based on Non-linear Shear Strength of Discontinuity (불연속면의 비선형 전단강도를 이용한 암반사면 쐐기파괴 확률 해석)

  • 윤우현;천병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.151-160
    • /
    • 2003
  • The stability of the designed rock slope is analysed based on two kinds of shear strength model. Besides the deterministic analysis, a probabilistic approach on Monte Carlo simulation is proposed to deal with the uncertain characteristics of the discontinuity and the results obtained from two models are compared to each other. To carry out the research of characteristics of the discontinuity, BIPS, DOM Scanline survey data and direct shear test data are used, and chi-square test is used for determining the probability distribution function. The rock slope is evaluated to be stable in the deterministic analysis, but in the probabilistic analysis, the probability of failure is more than 5%, so, it is considered that the rock slope is unstable. In the shear strength models, the probability of the failure based on the Mohr-Coulomb model(linear model) is higher than that of the Barton model. It is supported by the fact that the Mohr-Coulomb model is more sensitive to block size than the Barton model. In fact, there is no reliable way to estimate the unit cohesion of the Mohr-Coulomb model except f3r back analysis and in the case of small block failure in the slope, Mohr-Coulomb model may excessively evaluate the factor of the safety. So, the Barton model of which parameters are easily acquired using the geological survey is more reasonable for the stability of the studied slope. Also, the selection of the proper shear strength model is an important factor for slope failure analysis.

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.

The Mechanical Properties of Limestones Distributed in Jecheon (제천지역 석회암의 역학적 특성에 관한 연구)

  • Kim, Jong Woo;Kim, Min Sik;Kim, Pyoung Gi;Nor, Seung Jae;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.354-364
    • /
    • 2012
  • In order to evaluate the physical properties of rock which might serve as a database for both mining and civil works, a lot of laboratory tests for Jecheon limestones were conducted to find unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, poisson's ratio, tensile strength, shore hardness, friction angle and cohesion. On investigation of the mechanical properties of both the gray limestone and the clayey limestone distributed in the studied region, the clayey limestone turned out to have more weak mechanical properties which might come from low unit weight, high absorption ratio and high porosity of rocks. The failure criteria of Jecheon limestones were discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion. Regression analyses of the physical properties obtained from a lot of laboratory tests were also conducted by means of both linear and multiple regression analyses.

Comparison of Shear Strength Characteristics of Unsaturated Soil From Triaxial Compression Tests with Direct Shear Tests (삼축시험과 직접전단시험에 의한 불포화토의 전단특성 비교)

  • Hwang, Hui-Seok;Choi, Young-Nam;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • In this paper, shear strength characteristics of an unsaturated soil were compared using triaxial compression tests(CD) and modified direct shear tests and thus feasibility of the newly modified direct shear testing apparatus was confirmed. The shear strength tests of unsaturated state with a soil sample, obtained from a slope where debris flow occurred at Yangpyeong in Kyeunggi province during 2010, were performed. Both tests showed a linear relationship of matric suction with the shear strength under low level of matric suction. The apparent cohesion of the unsaturated soil was also increased linearly with increase of matric suction. As results of comparing two different testing apparatus, estimated values of shear strength parameters of unsaturated soil($c^{\prime}$, ${\phi}^b$) were slightly larger in the modified direct shear tests due to constraint effect of shear box.

Reinforced Effect of Staple Fiber for Soil - Waste Stone Sludge (폐석분 혼합토의 단섬유 보강 효과)

  • Choi, Min-Kyu;Park, Beum-Sic;Kim, Young-Muk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.45-55
    • /
    • 2012
  • This study is about the application of waste stone sludge as fill material. Waste stone sludge, weathered granite soil, and the mixture of the former and the latter strengthened with staple fiber are experimentally analyzed for measuring strength property. When staple fiber was mixed with waste stone sludge, weathered granite soil, and the mixture, there was a nearly linear relationship between the amount of the staple fiber and the increasing ratio of unconfined compressive strength. The increasing ratio of unconfined compressive strength was the largest in weathered granite soil. The increasing ratio of unconfined compressive strength of the mixture was similar to that of waste stone sludge. In the case of the mixture of weathered granite soil and waste stone sludge, an internal friction angle tended to increases rely on increasement of staple fiber content, whereas the change of cohesion was small. An internal friction angle was increased by 21 percent when staple fiber content is 0.75 percent. Comparing with weathered granite soil or waste stone sludge, strength parameters of the mixture were increased relatively. Thus strengthening effect of staple fiber in the mixture is expected.

Analysis of correlation between groundwater level decline and wetland area decrease

  • Amos Agossou;Jae-Boem Lee;Bo-Gwon Jung;Jeong-Seok Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.374-374
    • /
    • 2023
  • Groundwater is the main source of water on which relies many countries in case of emergency, this is the case of Japan in 2011 after the great Sendai Earthquake. This important resource is found to be heavily influenced by human induced factors such as wetland area reduction. For groundwater sustainable management in perfect cohesion with wetland it is important to understand the relationship between both resources. Wetlands have a strong interaction with both groundwater and surface water, influencing catchment hydrology and water quality. Quantifying groundwater-wetland interactions can help better identify locations for wetlands restoration and/or protection. This study uses observation data from piezometers and wetland to study the qualitative and quantitative aspects of the correlation. Groundwater level, wetland area, chemical, organic and inorganic contaminants are the important parameters used. the results proved that few contaminants in the wetland are found in groundwater and in general the wetland quality does not affect that much groundwater quality. The strong linear relationship found between wetland water level and nearest groundwater level proved that, in term of quantity, groundwater and wetland are strongly correlated. While wetland becoming dry, groundwater level has dropped in the region about 0.52m. The area of wetland was found to be lightly correlated with groundwater level, proving that wetlands dry has contributed to groundwater level declining. This study has showed that whilst rainfall variability contributed to the decline and loss of wetlands, the impacts from landuse changes and groundwater extraction were likely to be significant contributors to the observed losses.

  • PDF

A Study on Tunnel Loads in an Unconsolidated Ground with Inclined Layers (지층이 경사진 미고결 층상지반에서의 터널 작용토압에 관한 연구)

  • Park, Si Hyun;Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.275-282
    • /
    • 2006
  • Since tunnels are linear type structures that have a long extent in comparison to their excavation or inner section, tunnels must be constructed in various ground conditions. In this study, laboratory model tests and theoretical analysis on a tunnel loads are carried out in the unconsolidated ground with inclined layers for tunnel excavation. Laboratory model tests are performed with the variation in the angle of the inclined layers and tunnel depth for the model ground with inclined layers. As for the ground materials, two dimensional model ground is prepared with aluminum rods and blocks with no cohesion, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. Moreover tunnel load equation are newly induced so that comparisons between model test results and the theoretical results are conducted as well.

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.