• 제목/요약/키워드: linear and nonlinear analyses

검색결과 287건 처리시간 0.034초

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.483-494
    • /
    • 2016
  • Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

지반-구조물 상호작용의 비선형 시간영역해석을 위한 실용적 복합기법 (A Practical Hybird Approach for Nonlinear Time-Domain Analysis of Soil-Structure Interaction)

  • 김재민
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.132-139
    • /
    • 2000
  • This paper presents a new hybrid approach for nonlinear dynamic analysis of the soil-structure interaction system in the time domain. It employs, in a practical manner, a linear SSI program and a general-purpose nonlinear finite element program. In order to demonstrate the validity and applicability of the proposed method, seismic response analyses are carried out for a free-field problem and a 2-D subway station. The results indicate that the proposed methodology gives reasonable solution for the linear/nonlinear SSI problem utilizing a general-purpose finite element program. Some further studies will endorse the applicability of the method to various soil-structure interaction problems.

  • PDF

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안 (Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

구조 비선형을 고려한 이차원 단면 날개 모델의 이중 제한 주기 운동 (Dual-Limit Cycle Oscillation of 2D Typical Section Model considering Structural Nonlinearities)

  • 신원호;배재성;이인
    • 한국항공우주학회지
    • /
    • 제33권5호
    • /
    • pp.28-33
    • /
    • 2005
  • 이선형 플런지 스프링을 가지는 2차원 단면 익형 모델에 대하여 초음속 비선형 공탄성 해석을 수행하였다. 초음속 비정상 공기력 계산을 위해 DPM을 사용하였고 최소상태접근법을 사용하여 근사하였다. 비선형 플러터 해석을 위해 구조 비선형성을 비대칭 이선형 스프링으로 모델링하고 기술 함수 법을 사용하여 선형화하였다. 선형 및 비선형 플러터 해석 결과들은 공력탄성학적 특성들이 주파수 비에 중요한 영향을 받는다는 것을 보여준다. 비선형 플러터 해석으로부터 다양한 제한 주기 운동이 선형플러터 속도 이하 또는 이상에서 관측되었다. 또한 플러터 특성과 응답을 시간영역에서도 조사하였다.

비원형 단면의 선삭 가공시 발생하는 진동해석 (Vibration Analysis of a Lathe Performing Non-Circular Cutting)

  • 신응수;박정호
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

조합하중이 작용하는 복합적층 패널의 최소중량화설계 (Minimum Weight Design of Laminated Composite Panel under Combined Loading)

  • 이종선
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.95-101
    • /
    • 2006
  • Minimum weight design of laminated composite panel under combined loading was studied using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods. Various buckling load factors are obatined for laminated composite panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USNl25 prepreg and are simply-supported on four edges under combined loading, and then for them, minimum weight design analyses are carried out by the nonlinear search optimizer, ADS. This minimum weight design analyses are constructed with various process such as the simple design process, test simulation process and sensitivity analysis. Subseguently, the buckling mode shapes are obtained by buckling and minimum weight analyses.

Nonlinear analyses of structures with added passive devices

  • Tsai, C.S.;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.517-539
    • /
    • 2004
  • Many types of passive control devices have been recognized as effective tools for improving the seismic resistance of structures. A lot of past research has been carried out to study the response of structures equipped with energy-absorbing devices by assuming that the behavior of the beam-column systems are linearly elastic. However, linear theory may not be adequate for beams and columns during severe earthquakes. This paper presents the results of research on the nonlinear responses of structures with and without added passive devices under earthquakes. A new material model based on the plasticity theory and the two-surface model for beams and columns under six components of forces is proposed to predict the nonlinear behavior of beam-column systems. And a new nonlinear beam element in consideration of shear deformation is developed to analyze the beams and columns of a structure. Numerical results reveal that linear assumption may not be appropriate for beams and columns under seismic loadings, especially for unexpectedly large earthquakes. Also, it may be necessary to adopt nonlinear beam elements in the analysis and design process to assure the safety of structures with or without the control of devices.

Ambient vibration based structural evaluation of reinforced concrete building model

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.335-350
    • /
    • 2018
  • This paper presents numerical modelling, modal testing, finite element model updating, linear and nonlinear earthquake behavior of a reinforced concrete building model. A 1/2 geometrically scale, two-storey, reinforced concrete frame model with raft base were constructed, tested and analyzed. Modal testing on the model using ambient vibrations is performed to illustrate the dynamic characteristics experimentally. Finite element model of the structure is developed by ANSYS software and dynamic characteristics such as natural frequencies, mode shapes and damping ratios are calculated numerically. The enhanced frequency domain decomposition method and the stochastic subspace identification method are used for identifying dynamic characteristics experimentally and such values are used to update the finite element models. Different parameters of the model are calibrated using manual tuning process to minimize the differences between the numerically calculated and experimentally measured dynamic characteristics. The maximum difference between the measured and numerically calculated frequencies is reduced from 28.47% to 4.75% with the model updating. To determine the effects of the finite element model updating on the earthquake behavior, linear and nonlinear earthquake analyses are performed using 1992 Erzincan earthquake record, before and after model updating. After model updating, the maximum differences in the displacements and stresses were obtained as 29% and 25% for the linear earthquake analysis and 28% and 47% for the nonlinear earthquake analysis compared with that obtained from initial earthquake results before model updating. These differences state that finite element model updating provides a significant influence on linear and especially nonlinear earthquake behavior of buildings.