• Title/Summary/Keyword: linear actuator

Search Result 633, Processing Time 0.031 seconds

Application of Adaptive Control for the U Type TLD (U자형 TLD시스템에 대한 적응제어 적용)

  • Ga, Chun-Sik;Shin, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.518-521
    • /
    • 2005
  • The Structures or buildings nowadays draw more complexity in design due to space limitation and other factor that affect the height and dimensions, that results to instability. So the various methods have been carried out to improve the safety factor from an earthquake or a boom until recently. But, it is very hard to get model precisely because these structures are the non-linear and multi-variable systems. For this reason, we developed the active control system that is applied the adaptive control method on the U type Tuned Liquid Damper(TLD) passive control system. It is proven that the proposed active control strategy of the plate carrying U type TLD system is the more effective control method to suppress the vibration of the structure. The entire hybrid control system is composed of the actuator acted in the opposite direction of the TLD system's motion direction and the active control device with an air pressure adjuster. This paper proposed the adaptive control methods to improve the problem of U type TLD system which is used widely for the passive control of the building. And it is proved by the simulation. In advanced, it is developed the pressure control method that is improved the hybrid controller's performance by using air chamber pressure controller. These methods take the advantage of the decrease of the maximum displacement by using the controller as soon as the impact is loaded. This is a very important element for the safety design and economic design of structures.

  • PDF

A Study on the Smart Filter System for External Environment Recognition (외부환경 인식용 스마트 필터 시스템에 대한 연구)

  • Seo, Do-Won;Yoon, Keun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.271-278
    • /
    • 2021
  • This paper is a study on the implementation of smart filter system that recognizes the external environment and automatically removes pollutants according to pollution level. Recently, the occurrence of various pollutants in indoor and outdoor space has adversely affected the human body. Especially, various fine dust generated in the atmosphere becomes worse in closed residential space or office space. Although air pollution can be temporary lowered through ventilation, it is difficult to respond to fine dust changes in real time, and such problems become serious in the space where many people reside, such as at home or industry. Therefore, it is necessary to measure the pollution level of fine dust inside the residential space in real time and to reduce the pollution of indoor ventilation through automatic ventilation with the outside. To improve these problems, this paper proposes the implementation of smart filter system for external environment recognition. The structure of smart filter system that automatically measures air quality inside and outside, removes pollutants, implements the function, and confirms the operability by manufacturing prototypes. Finally, the effectiveness of the smart filter system for solving fine dust problems was examined.

Implementation of Automatic Height Adjustment System (자동 레벨 컨트롤 적재물 운반 시스템의 구현)

  • Lim, Seong-Jae;Lee, Tae-Geun;Jang, Jin-Nyeong;Ko, Ye-Eun;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.133-138
    • /
    • 2022
  • In this paper we present the system we produced to help workers at logistic centers and prevent accidents, in which they could get hurt. As a base we use the main control device, named Arduino uno, which measures the weight by using load cells. When operating with the system, by placing object on it, the system measures the weight of the object and keeps the highest point at the same height by lowering its board. This improves the convenience while placing and removing objects from the board. If the weight of the placed object is exceeding the set value the board will also lower itself to secure the safety. By using a line tracer system, the objects are being moved only on a set route with the goal to make it even more comfortable to use.

Influence of Heat Treatment Conditions on Temperature Control Parameter ((t1) for Shape Memory Alloy (SMA) Actuator in Nucleoplasty (수핵성형술용 형상기억합금(SMA) 액추에이터 와이어의 열처리 조건 변화가 온도제어 파라미터(t1)에 미치는 영향)

  • Oh, Dong-Joon;Kim, Cheol-Woong;Yang, Young-Gyu;Kim, Tae-Young;Kim, Jay-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.619-628
    • /
    • 2010
  • Shape Memory Alloy (SMA) has recently received attention in developing implantable surgical equipments and it is expected to lead the future medical device market by adequately imitating surgeons' flexible and delicate hand movement. However, SMA actuators have not been used widely because of their nonlinear behavior called hysteresis, which makes their control difficult. Hence, we propose a parameter, $t_1$, which is necessary for temperature control, by analyzing the open-loop step response between current and temperature and by comparing it with the values of linear differential equations. $t_1$ is a pole of the transfer function in the invariant linear model in which the input and output are current and temperature, respectively; hence, $t_1$ is found to be related to the state variable used for temperature control. When considering the parameter under heat treatment conditions, $T_{max}$ was found to assume the lowest value, and $t_1$ was irrelevant to the heat treatment.

Electrical properties of multilayer actuator and linear ultrasonic motor using low temperature PZW-PMN-PZT ceramics (저온소결 PZW-PMN-PZT 세라믹을 이용한 적층액츄에이터 및 선형초음파 모터의 전긱적 특성)

  • Lee, Il-Ha;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Yeong-Ho;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.206-206
    • /
    • 2008
  • 압전소자를 이용한 초음파 모터는 전자기적 원리로 동작하는 기존의 모터에 비해 구조가 간단하고 소형, 경량화가 가능하며 저속에서 큰 토크가 가능하고 ${\mu}m$단위 까지 정밀제어가 가능하다는 장점 등으로 인해 그 응용분야가 점차 확대되고 있다. 초음파 모터의 원리는 수평과 수직방향에서 변위가 타원형 운동을 형성하는 것이다. 따라서 선택한 타원운동의 방식에 의해서 모터의 형상이 달라진다. 초음파 모터는 액츄에이터를 사용하여 만들기 때문에 액츄에이터의 특성은 모터의 타원변위나 토크에 영향을 미친다. 단판형 액츄에이터에 비하여 적층 액츄에이터는 입력 임피던스를 낮추어 낮은 구동전압에서 구동이 가능하며 큰 변위와 토크를 발생하기 때문에 진동자의 수명 향상과 구동전압을 낮추기에 적합하다. 적층 액츄에이터는 변위량이나 응력 등을 개선하기 위해서 전기기계 결합계수(kp) 및 압전 d상수가 큰 재료가 요구되며, 고전압에서 장시간 구동 시 마찰에 의한 열손실을 감소시키기 위해 높은 기계적 품질계수(Qm)를 가져야한다. 적층 시 내부전극으로 사용하는 Pd, Pt가 함유된 전극은 가격이 비싸 제조비용을 상승시킨다. 상대적으로 값싼 Ag전극을 사용하면 비용절감을 할 수 있지만 융점이 낮아서 저온소결이 불가피하다. 따라서, 특성이 우수한 적층 액츄에이터를 제조하기 위해서 저손실, 저온소결 할 수 있는 액츄에이터 재료가 필요한 실정이다. L1-B4 혈 선혈 초음파 모터는 L1모드와 B4모드의 공진 주파수가 일치하여야 큰 변위를 얻을 수 있는데 이전의 논문에서 Atila를 이용한 시뮬레이션 결과를 분석한 봐 있다. 적층 액츄에이터의 층수를 5,7,9,11,13,15층으로 하여 L1-B4모드에서의 공진주파수를 비교한 결과 13 층일 때 두 모드가 비슷한 공진주파수를 보였고, 티원변위궤적도 다른 층수에 비해 크게 나타났다. 본 연구에서는 시뮬레이션 결과 가장 좋은 특성을 보인 13층 액츄에이터로 선형 초음파 모터를 제작하였다. 또한, 액츄에이터는 압전 및 유전특성이 우수한 저온소결 PZW-PMN-PZT세라믹을 이용하여 제작하였고, 내부전극으로 Ag전극을 사용하였다. 제작된 13 층 선형초음파모터를 가지고 프리로드 및 전압에 따른 속도를 조사하였고, 시뮬레이션 결과와 비교해 보았다.

  • PDF

On the Experimental Modeling of Focal Plane Compensation Device for Image Stabilization of Small Satellite (소형위성 광학탑재체의 영상안정화를 위한 초점면부 보정장치의 실험적 모델링에 관한 연구)

  • Kang, Myoung-Soo;Hwang, Jai-Hyuk;Bae, Jae-Sung;Park, Jean-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.757-764
    • /
    • 2015
  • Mathematical modeling of focal plane compensation device in the small earth-observation satellite camera has been conducted experimently for compensation of micro-vibration disturbance. The PZT actuators are used as control actuators for compensation device. It is quite difficult to build up mathematical model because of hysteresis characteristic of PZT actuators. Therefore, the compensation device system is assumed as a $2^{nd}$ order linear system and modeled by using MATLAB System Identification Toolbox. It has been found that four linear models of compensation device are needed to meet 10% error in the input frequency range of 0~50Hz. These models describe accurately the dynamics of compensation device in the 4 divided domains of the input frequency range of 0~50Hz, respectively. Micro-vibration disturbance can be compensated by feedback control strategy of switching four models appropriately according to the input frequency.

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.

A Study for Lifespan Prediction of Expansion by Temperature Status (온도상태에 따른 신축관 이음의 수명예측에 관한 연구)

  • Oh, Jung-Soo;Lee, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.424-429
    • /
    • 2018
  • In this study, an expansion joint that is susceptible to waterhammer was tested for its vibration durability. The operation data for the hydraulic actuator was the expansion length of the expansion joint when the waterhammer occurred. In the case of the vibration durability test, the internal temperature status of the expansion joint was assumed to be a stress factor and a lifespan prediction model was assumed to follow the Arrhenius model. A test was carried out by increasing the internal temperature status at $30^{\circ}C$, $50^{\circ}C$, and $65^{\circ}C$. By a linear transformation of the lifespan data for each temperature, a constant value and activation energy coefficient was induced for the Arrhenius equation and verified by comparing the value of a lifetime prediction model with the experimental value at $85^{\circ}C$. The failure modes of the ongoing or finished test were leakage, bellows separation, and internal deformation. In the future, a composite lifespan prediction model, including two more stress factors, will be developed.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester (IDT 전극 패턴 임베디드 압전 에너지 하베스터의 특성)

  • Lee, Min-seon;Kim, Chang-Il;Yun, Ji-sun;Park, Woon Ik;Hong, Youn-Woo;Paik, Jong Hoo;Cho, Jeong Ho;Park, Yong-Ho;Jang, Yong-Ho;Choi, Beom-Jin;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.581-588
    • /
    • 2016
  • Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).